Human-level control through deep reinforcement learning V Mnih, K Kavukcuoglu, D Silver, AA Rusu, J Veness, MG Bellemare, ... nature 518 (7540), 529-533, 2015 | 14077 | 2015 |
Mastering the game of Go with deep neural networks and tree search D Silver, A Huang, CJ Maddison, A Guez, L Sifre, G Van Den Driessche, ... nature 529 (7587), 484-489, 2016 | 9894 | 2016 |
Playing atari with deep reinforcement learning V Mnih, K Kavukcuoglu, D Silver, A Graves, I Antonoglou, D Wierstra, ... arXiv preprint arXiv:1312.5602, 2013 | 5903 | 2013 |
Continuous control with deep reinforcement learning TP Lillicrap, JJ Hunt, A Pritzel, N Heess, T Erez, Y Tassa, D Silver, ... arXiv preprint arXiv:1509.02971, 2015 | 5489 | 2015 |
Mastering the game of go without human knowledge D Silver, J Schrittwieser, K Simonyan, I Antonoglou, A Huang, A Guez, ... nature 550 (7676), 354-359, 2017 | 5204 | 2017 |
Asynchronous methods for deep reinforcement learning V Mnih, AP Badia, M Mirza, A Graves, T Lillicrap, T Harley, D Silver, ... International conference on machine learning, 1928-1937, 2016 | 4700 | 2016 |
Deep reinforcement learning with double q-learning H Van Hasselt, A Guez, D Silver Proceedings of the AAAI Conference on Artificial Intelligence 30 (1), 2016 | 3197 | 2016 |
Deterministic policy gradient algorithms D Silver, G Lever, N Heess, T Degris, D Wierstra, M Riedmiller International conference on machine learning, 387-395, 2014 | 1979 | 2014 |
Prioritized experience replay T Schaul, J Quan, I Antonoglou, D Silver arXiv preprint arXiv:1511.05952, 2015 | 1905 | 2015 |
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play D Silver, T Hubert, J Schrittwieser, I Antonoglou, M Lai, A Guez, M Lanctot, ... Science 362 (6419), 1140-1144, 2018 | 1287 | 2018 |
Mastering chess and shogi by self-play with a general reinforcement learning algorithm D Silver, T Hubert, J Schrittwieser, I Antonoglou, M Lai, A Guez, M Lanctot, ... arXiv preprint arXiv:1712.01815, 2017 | 960 | 2017 |
Monte-Carlo planning in large POMDPs D Silver, J Veness Neural Information Processing Systems, 2010 | 897 | 2010 |
Rainbow: Combining improvements in deep reinforcement learning M Hessel, J Modayil, H Van Hasselt, T Schaul, G Ostrovski, W Dabney, ... Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018 | 894 | 2018 |
Grandmaster level in StarCraft II using multi-agent reinforcement learning O Vinyals, I Babuschkin, WM Czarnecki, M Mathieu, A Dudzik, J Chung, ... Nature 575 (7782), 350-354, 2019 | 735 | 2019 |
Reinforcement learning with unsupervised auxiliary tasks M Jaderberg, V Mnih, WM Czarnecki, T Schaul, JZ Leibo, D Silver, ... arXiv preprint arXiv:1611.05397, 2016 | 732 | 2016 |
Combining online and offline knowledge in UCT S Gelly, D Silver Proceedings of the 24th international conference on Machine learning, 273-280, 2007 | 684 | 2007 |
Cooperative Pathfinding. D Silver Aiide 1, 117-122, 2005 | 523 | 2005 |
Emergence of locomotion behaviours in rich environments N Heess, D TB, S Sriram, J Lemmon, J Merel, G Wayne, Y Tassa, T Erez, ... arXiv preprint arXiv:1707.02286, 2017 | 522 | 2017 |
Universal value function approximators T Schaul, D Horgan, K Gregor, D Silver International conference on machine learning, 1312-1320, 2015 | 518 | 2015 |
Fast gradient-descent methods for temporal-difference learning with linear function approximation RS Sutton, HR Maei, D Precup, S Bhatnagar, D Silver, C Szepesvári, ... Proceedings of the 26th Annual International Conference on Machine Learning …, 2009 | 503 | 2009 |