Folgen
Thomas Brox
Thomas Brox
University of Freiburg and Amazon
Bestätigte E-Mail-Adresse bei cs.uni-freiburg.de - Startseite
Titel
Zitiert von
Zitiert von
Jahr
U-net: Convolutional networks for biomedical image segmentation
O Ronneberger, P Fischer, T Brox
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th …, 2015
563642015
3D U-Net: learning dense volumetric segmentation from sparse annotation
Ö Çiçek, A Abdulkadir, SS Lienkamp, T Brox, O Ronneberger
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th …, 2016
49932016
Striving for simplicity: The all convolutional net
JT Springenberg, A Dosovitskiy, T Brox, M Riedmiller
arXiv preprint arXiv:1412.6806, 2014
45872014
Flownet: Learning optical flow with convolutional networks
A Dosovitskiy, P Fischer, E Ilg, C Hazirbas, V Golkov, P van der Smagt, ...
2015 IEEE International Conference on Computer Vision (ICCV), 2758-2766, 2015
3901*2015
High accuracy optical flow estimation based on a theory for warping
T Brox, A Bruhn, N Papenberg, J Weickert
Computer Vision-ECCV 2004: 8th European Conference on Computer Vision …, 2004
34872004
Flownet 2.0: Evolution of optical flow estimation with deep networks
E Ilg, N Mayer, T Saikia, M Keuper, A Dosovitskiy, T Brox
Proceedings of the IEEE conference on computer vision and pattern …, 2017
28142017
A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation
N Mayer, E Ilg, P Hausser, P Fischer, D Cremers, A Dosovitskiy, T Brox
Proceedings of the IEEE conference on computer vision and pattern …, 2016
21492016
Large displacement optical flow: descriptor matching in variational motion estimation
T Brox, J Malik
IEEE transactions on pattern analysis and machine intelligence 33 (3), 500-513, 2010
16562010
Discriminative unsupervised feature learning with convolutional neural networks
A Dosovitskiy, JT Springenberg, M Riedmiller, T Brox
Advances in neural information processing systems 27, 2014
16052014
U-Net: deep learning for cell counting, detection, and morphometry
T Falk, D Mai, R Bensch, Ö Çiçek, A Abdulkadir, Y Marrakchi, A Böhm, ...
Nature methods 16 (1), 67-70, 2019
11382019
Generating images with perceptual similarity metrics based on deep networks
A Dosovitskiy, T Brox
Advances in neural information processing systems 29, 2016
10892016
Object segmentation by long term analysis of point trajectories
T Brox, J Malik
Computer Vision–ECCV 2010: 11th European Conference on Computer Vision …, 2010
9662010
Learning to generate chairs with convolutional neural networks
A Dosovitskiy, J Tobias Springenberg, T Brox
Proceedings of the IEEE conference on computer vision and pattern …, 2015
7452015
Inverting visual representations with convolutional networks
A Dosovitskiy, T Brox
Proceedings of the IEEE conference on computer vision and pattern …, 2016
732*2016
Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs
M Tatarchenko, A Dosovitskiy, T Brox
Proceedings of the IEEE international conference on computer vision, 2088-2096, 2017
6722017
Sparsity invariant cnns
J Uhrig, N Schneider, L Schneider, U Franke, T Brox, A Geiger
2017 international conference on 3D Vision (3DV), 11-20, 2017
6582017
Demon: Depth and motion network for learning monocular stereo
B Ummenhofer, H Zhou, J Uhrig, N Mayer, E Ilg, A Dosovitskiy, T Brox
Proceedings of the IEEE conference on computer vision and pattern …, 2017
6562017
Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
A Nguyen, A Dosovitskiy, J Yosinski, T Brox, J Clune
Advances in neural information processing systems 29, 2016
6502016
Highly accurate optic flow computation with theoretically justified warping
N Papenberg, A Bruhn, T Brox, S Didas, J Weickert
International Journal of Computer Vision 67, 141-158, 2006
6312006
Learning to estimate 3d hand pose from single rgb images
C Zimmermann, T Brox
Proceedings of the IEEE international conference on computer vision, 4903-4911, 2017
6212017
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20