Accelerating uncertainty quantification of groundwater flow modelling using a deep neural network proxy MB Lykkegaard, TJ Dodwell, D Moxey Computer Methods in Applied Mechanics and Engineering 383, 113895, 2021 | 22 | 2021 |
Multilevel delayed acceptance MCMC MB Lykkegaard, TJ Dodwell, C Fox, G Mingas, R Scheichl SIAM/ASA Journal on Uncertainty Quantification 11 (1), 1-30, 2023 | 9 | 2023 |
Multilevel delayed acceptance MCMC with an adaptive error model in PyMC3 MB Lykkegaard, G Mingas, R Scheichl, C Fox, TJ Dodwell arXiv preprint arXiv:2012.05668, 2020 | 9 | 2020 |
The human factor: Weather bias in manual lake water quality monitoring JM Rand, MO Nanko, MB Lykkegaard, D Wain, W King, LD Bryant, ... Limnology and Oceanography: Methods 20 (5), 288-303, 2022 | 4 | 2022 |
Where to drill next? A dual-weighted approach to adaptive optimal design of groundwater surveys MB Lykkegaard, TJ Dodwell Advances in Water Resources 164, 104219, 2022 | 3 | 2022 |
Lowering the Entry Bar to HPC-Scale Uncertainty Quantification L Seelinger, A Reinarz, J Benezech, MB Lykkegaard, L Tamellini, ... arXiv preprint arXiv:2304.14087, 2023 | 1 | 2023 |
Gaussian Process Regression models for the properties of micro-tearing modes in spherical tokamak W Hornsby, A Gray, J Buchanan, B Patel, D Kennedy, F Casson, C Roach, ... arXiv preprint arXiv:2309.09785, 2023 | | 2023 |
DaFT: DerivAtive-Free Thinning N Papadimas, M Lykkegaard, T Dodwell | | 2022 |
Multilevel Delayed Acceptance MCMC with Applications to Hydrogeological Inverse Problems MB Lykkegaard University of Exeter, 2022 | | 2022 |