Low-cost 3D systems: suitable tools for plant phenotyping S Paulus, J Behmann, AK Mahlein, L Plümer, H Kuhlmann Sensors 14 (2), 3001-3018, 2014 | 209 | 2014 |
Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping S Paulus, J Dupuis, AK Mahlein, H Kuhlmann BMC bioinformatics 14 (1), 1-12, 2013 | 160 | 2013 |
High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants S Paulus, H Schumann, H Kuhlmann, J Léon Biosystems Engineering 121, 1-11, 2014 | 154 | 2014 |
Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level JC Rose, S Paulus, H Kuhlmann Sensors 15 (5), 9651-9665, 2015 | 76 | 2015 |
Fusion of sensor data for the detection and differentiation of plant diseases in cucumber CA Berdugo, R Zito, S Paulus, AK Mahlein Plant pathology 63 (6), 1344-1356, 2014 | 73 | 2014 |
Automated analysis of barley organs using 3D laser scanning: An approach for high throughput phenotyping S Paulus, J Dupuis, S Riedel, H Kuhlmann Sensors 14 (7), 12670-12686, 2014 | 70 | 2014 |
Automated interpretation of 3D laserscanned point clouds for plant organ segmentation M Wahabzada, S Paulus, K Kersting, AK Mahlein BMC bioinformatics 16 (1), 1-11, 2015 | 61 | 2015 |
Generation and application of hyperspectral 3D plant models: methods and challenges J Behmann, AK Mahlein, S Paulus, J Dupuis, H Kuhlmann, EC Oerke, ... Machine Vision and Applications 27 (5), 611-624, 2016 | 55 | 2016 |
Calibration of hyperspectral close-range pushbroom cameras for plant phenotyping J Behmann, AK Mahlein, S Paulus, H Kuhlmann, EC Oerke, L Plümer ISPRS Journal of Photogrammetry and Remote Sensing 106, 172-182, 2015 | 49 | 2015 |
Measuring crops in 3D: using geometry for plant phenotyping S Paulus Plant Methods 15 (1), 1-13, 2019 | 29 | 2019 |
Limits of active laser triangulation as an instrument for high precision plant imaging S Paulus, T Eichert, HE Goldbach, H Kuhlmann Sensors 14 (2), 2489-2509, 2014 | 27 | 2014 |
A multi-resolution approach for an automated fusion of different low-cost 3D sensors J Dupuis, S Paulus, J Behmann, L Plümer, H Kuhlmann Sensors 14 (4), 7563-7579, 2014 | 17 | 2014 |
Evaluation of different fungicides and nitrogen rates on grain yield and bread-making quality in wheat affected by Septoria tritici blotch and yellow spot AC Castro, MC Fleitas, M Schierenbeck, GS Gerard, MR Simón Journal of cereal science 83, 49-57, 2018 | 13 | 2018 |
Spatial referencing of hyperspectral images for tracing of plant disease symptoms J Behmann, D Bohnenkamp, S Paulus, AK Mahlein Journal of Imaging 4 (12), 143, 2018 | 11 | 2018 |
Generation and application of hyperspectral 3D plant models J Behmann, AK Mahlein, S Paulus, H Kuhlmann, EC Oerke, L Plümer European Conference on Computer Vision, 117-130, 2014 | 10 | 2014 |
Extending hyperspectral imaging for plant phenotyping to the UV-range A Brugger, J Behmann, S Paulus, HG Luigs, MT Kuska, P Schramowski, ... Remote Sensing 11 (12), 1401, 2019 | 9 | 2019 |
The impact of different leaf surface tissues on active 3D laser triangulation measurements J Dupuis, S Paulus, AK Mahlein, T Eichert PFG Photogrammetrie, Fernerkundung, Geoinformation, 437-447, 2015 | 6 | 2015 |
Flächenhafte Deformationsanalysen mit terrestrischen und Nahbereichslaserscannern-eine Gegenüberstellung anhand von Beispielen C Holst, J Dupuis, S Paulus, H Kuhlmann Allgem. Verm. Nachr 7, 2014 | 6 | 2014 |
Hyperspectral imaging of symptoms induced by Rhizoctonia solani in sugar beet: comparison of input data and different machine learning algorithms A Barreto, S Paulus, M Varrelmann, AK Mahlein Journal of Plant Diseases and Protection 127 (4), 441-451, 2020 | 3 | 2020 |
Automatische Parameterextraktion aus hochauflösenden Laserscans–eine wichtiger Schritt bei der Phänotypisierung S Paulus, J Dupuis, H Schumann, H Kuhlmann Bornimer Agrartechnische Berichte 81, 241-249, 2013 | 3 | 2013 |