Folgen
Nathanael Bosch
Titel
Zitiert von
Zitiert von
Jahr
Calibrated adaptive probabilistic ODE solvers
N Bosch, P Hennig, F Tronarp
International Conference on Artificial Intelligence and Statistics, 3466-3474, 2021
312021
Probabilistic ODE solutions in millions of dimensions
N Krämer*, N Bosch*, J Schmidt*, P Hennig
International Conference on Machine Learning, 11634-11649, 2022
192022
ProbNum: Probabilistic Numerics in Python
J Wenger, N Krämer, M Pförtner, J Schmidt, N Bosch, N Effenberger, ...
arXiv preprint arXiv:2112.02100, 2021
192021
Fenrir: Physics-Enhanced Regression for Initial Value Problems
F Tronarp*, N Bosch*, P Hennig
International Conference on Machine Learning, 21776--21794, 2022
132022
Pick-and-mix information operators for probabilistic ODE solvers
N Bosch, F Tronarp, P Hennig
International Conference on Artificial Intelligence and Statistics, 10015-10027, 2022
112022
Probabilistic Exponential Integrators
N Bosch, P Hennig, F Tronarp
Advances in Neural Information Processing Systems 36, 2024
62024
Parallel-in-Time Probabilistic Numerical ODE Solvers
N Bosch, A Corenflos, F Yaghoobi, F Tronarp, P Hennig, S Särkkä
Journal of Machine Learning Research 25 (206), 1-27, 2024
42024
Diffusion Tempering Improves Parameter Estimation with Probabilistic Integrators for Ordinary Differential Equations
J Beck, N Bosch, M Deistler, KL Kadhim, JH Macke, P Hennig, P Berens
arXiv preprint arXiv:2402.12231, 2024
32024
Planning from Images with Deep Latent Gaussian Process Dynamics
N Bosch*, J Achterhold*, L Leal-Taixé, J Stückler
Learning for Dynamics and Control, 640-650, 2020
22020
ProbNumDiffEq. jl: Probabilistic Numerical Solvers for Ordinary Differential Equations in Julia
N Bosch
Journal of Open Source Software 9 (101), 7048, 2024
12024
Probabilistic ODE Solvers for Integration Error-Aware Numerical Optimal Control
A Lahr, F Tronarp, N Bosch, J Schmidt, P Hennig, MN Zeilinger
Proceedings of Machine Learning Research 424, 2024
12024
Efficient Weight-Space Laplace-Gaussian Filtering and Smoothing for Sequential Deep Learning
J Sliwa, F Schneider, N Bosch, A Kristiadi, P Hennig
arXiv preprint arXiv:2410.06800, 2024
2024
Evolutionary Games for Global Function Minimization
N Bosch
Master's Thesis @ TUM, 2018
2018
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–13