Folgen
Dimitrios Kollias
Dimitrios Kollias
Assistant Professor at Queen Mary University of London, Researcher at Imperial College London
Bestätigte E-Mail-Adresse bei qmul.ac.uk
Titel
Zitiert von
Zitiert von
Jahr
Deep affect prediction in-the-wild: Aff-wild database and challenge, deep architectures, and beyond
D Kollias, P Tzirakis, MA Nicolaou, A Papaioannou, G Zhao, B Schuller, ...
International Journal of Computer Vision 127 (6-7), 907-929, 2019
3102019
Aff-wild: valence and arousal'In-the-Wild'challenge
S Zafeiriou, D Kollias, MA Nicolaou, A Papaioannou, G Zhao, I Kotsia
Proceedings of the IEEE conference on computer vision and pattern …, 2017
2592017
Expression, affect, action unit recognition: Aff-wild2, multi-task learning and arcface
D Kollias, S Zafeiriou
arXiv preprint arXiv:1910.04855, 2019
2212019
Analysing affective behavior in the first abaw 2020 competition
D Kollias, A Schulc, E Hajiyev, S Zafeiriou
2020 15th IEEE International Conference on Automatic Face and Gesture …, 2020
1702020
Deep neural architectures for prediction in healthcare
D Kollias, A Tagaris, A Stafylopatis, S Kollias, G Tagaris
Complex & Intelligent Systems 4, 119-131, 2018
1442018
Recognition of affect in the wild using deep neural networks
D Kollias, MA Nicolaou, I Kotsia, G Zhao, S Zafeiriou
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017
1372017
Aff-wild2: Extending the aff-wild database for affect recognition
D Kollias, S Zafeiriou
arXiv preprint arXiv:1811.07770, 2018
1162018
Distribution matching for heterogeneous multi-task learning: a large-scale face study
D Kollias, V Sharmanska, S Zafeiriou
arXiv preprint arXiv:2105.03790, 2021
1122021
Face behavior a la carte: Expressions, affect and action units in a single network
D Kollias, V Sharmanska, S Zafeiriou
arXiv preprint arXiv:1910.11111, 2019
1122019
Affect analysis in-the-wild: Valence-arousal, expressions, action units and a unified framework
D Kollias, S Zafeiriou
arXiv preprint arXiv:2103.15792, 2021
1082021
Deep neural network augmentation: Generating faces for affect analysis
D Kollias, S Cheng, E Ververas, I Kotsia, S Zafeiriou
International Journal of Computer Vision 128, 1455-1484, 2020
108*2020
Analysing affective behavior in the second abaw2 competition
D Kollias, S Zafeiriou
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
952021
Exploiting multi-cnn features in cnn-rnn based dimensional emotion recognition on the omg in-the-wild dataset
D Kollias, S Zafeiriou
IEEE Transactions on Affective Computing 12 (3), 595-606, 2020
932020
Abaw: Valence-arousal estimation, expression recognition, action unit detection & multi-task learning challenges
D Kollias
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
852022
Mia-cov19d: Covid-19 detection through 3-d chest ct image analysis
D Kollias, A Arsenos, L Soukissian, S Kollias
Proceedings of the IEEE/CVF International Conference on Computer Vision, 537-544, 2021
692021
Deep transparent prediction through latent representation analysis
D Kollias, N Bouas, Y Vlaxos, V Brillakis, M Seferis, I Kollia, L Sukissian, ...
arXiv preprint arXiv:2009.07044, 2020
652020
A multi-task learning & generation framework: Valence-arousal, action units & primary expressions
D Kollias, S Zafeiriou
arXiv preprint arXiv:1811.07771, 2018
632018
Transparent adaptation in deep medical image diagnosis
D Kollias, Y Vlaxos, M Seferis, I Kollia, L Sukissian, J Wingate, S Kollias
Trustworthy AI-Integrating Learning, Optimization and Reasoning: First …, 2021
622021
Machine learning for neurodegenerative disorder diagnosis—survey of practices and launch of benchmark dataset
A Tagaris, D Kollias, A Stafylopatis, G Tagaris, S Kollias
International Journal on Artificial Intelligence Tools 27 (03), 1850011, 2018
602018
Adaptation and contextualization of deep neural network models
D Kollias, M Yu, A Tagaris, G Leontidis, A Stafylopatis, S Kollias
2017 IEEE symposium series on computational intelligence (SSCI), 1-8, 2017
512017
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20