Folgen
Alexander G. D. G. Matthews
Alexander G. D. G. Matthews
DeepMind
Bestätigte E-Mail-Adresse bei google.com
Titel
Zitiert von
Zitiert von
Jahr
Scalable Variational Gaussian Process Classification.
J Hensman, A Matthews, Z Ghahramani
The 18th International Conference on Artificial Intelligence and Statistics …, 2015
4492015
GPflow: A Gaussian process library using TensorFlow
AGG Matthews, M van der Wilk, T Nickson, K Fujii, A Boukouvalas, ...
Journal of Machine Learning Research 18 (40), 1-6, 2017
442*2017
Gaussian Process Behaviour in Wide Deep Neural Networks
AGG Matthews, J Hron, M Rowland, RE Turner, Z Ghahramani
International Conference on Learning Representations (ICLR), 2018
342*2018
Ab-Initio Solution of the Many-Electron Schr\" odinger Equation with Deep Neural Networks
D Pfau, JS Spencer, AGG Matthews, WMC Foulkes
arXiv preprint arXiv:1909.02487, 2019
1982019
On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes
AGG Matthews, J Hensman, RE Turner, Z Ghahramani
The 19th International Conference on Artificial Intelligence and Statistics …, 2016
143*2016
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
J Bradshaw, AGG Matthews, Z Ghahramani
arXiv preprint arXiv:1707.02476, 2017
1362017
MCMC for variationally sparse Gaussian processes
J Hensman, AG Matthews, M Filippone, Z Ghahramani
Advances in Neural Information Processing Systems, 1648-1656, 2015
1292015
Functional Regularisation for Continual Learning with Gaussian Processes
MK Titsias, J Schwarz, AGG Matthews, R Pascanu, YW Teh
International Conference on Learning Representations, 2019
89*2019
Measurement and simulation of the effect of compaction on the pore structure and saturated hydraulic conductivity of grassland and arable soil
GP Matthews, GM Laudone, AS Gregory, NRA Bird, AG de G Matthews, ...
Water Resources Research 46 (5), 2010
71*2010
Variational Bayesian dropout: pitfalls and fixes
J Hron, A Matthews, Z Ghahramani
Proceedings of Machine Learning Research, 2018
542018
Scalable Gaussian process inference using variational methods
AGG Matthews
University of Cambridge, 2017
542017
Pushing the frontiers of density functionals by solving the fractional electron problem
J Kirkpatrick, B McMorrow, DHP Turban, AL Gaunt, JS Spencer, ...
Science 374 (6573), 1385-1389, 2021
482021
Variational Gaussian Dropout is not Bayesian
J Hron, AGG Matthews, Z Ghahramani
arXiv preprint arXiv:1711.02989, 2017
38*2017
A depth filtration model of straining within the void networks of stainless steel filters
JC Price, GP Matthews, K Quinlan, J Sexton, AGG Matthews
AIChE journal 55 (12), 3134-3144, 2009
172009
Sample-then-optimize posterior sampling for bayesian linear models
AGG Matthews, J Hron, RE Turner, Z Ghahramani
NeurIPS Workshop on Advances in Approximate Bayesian Inference, 2017
13*2017
Annealed flow transport monte carlo
M Arbel, A Matthews, A Doucet
International Conference on Machine Learning, 318-330, 2021
42021
Scattering theory for quantum Hall anyons in a saddle point potential
A Matthews, NR Cooper
Physical Review B 80 (16), 165309, 2009
42009
Estimation of structural element sizes in sand and compacted blocks of ground calcium carbonate using a void network model
GM Laudone, GP Matthews, PAC Gane, AG Matthews, CJ Ridgway, ...
Transport in porous media 66 (3), 403-419, 2007
32007
Continual Repeated Annealed Flow Transport Monte Carlo
AGDG Matthews, M Arbel, DJ Rezende, A Doucet
arXiv preprint arXiv:2201.13117, 2022
12022
Classification using log Gaussian Cox processes
AG Matthews, Z Ghahramani
arXiv preprint arXiv:1405.4141, 2014
12014
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20