Follow
Alexander G. D. G. Matthews
Alexander G. D. G. Matthews
DeepMind
Verified email at google.com
Title
Cited by
Cited by
Year
Scalable Variational Gaussian Process Classification.
J Hensman, A Matthews, Z Ghahramani
The 18th International Conference on Artificial Intelligence and Statistics …, 2015
7182015
GPflow: A Gaussian process library using TensorFlow
AGG Matthews, M van der Wilk, T Nickson, K Fujii, A Boukouvalas, ...
Journal of Machine Learning Research 18 (40), 1-6, 2017
692*2017
Gaussian Process Behaviour in Wide Deep Neural Networks
AGG Matthews, J Hron, M Rowland, RE Turner, Z Ghahramani
International Conference on Learning Representations (ICLR), 2018
555*2018
Ab-Initio Solution of the Many-Electron Schr\" odinger Equation with Deep Neural Networks
D Pfau, JS Spencer, AGG Matthews, WMC Foulkes
arXiv preprint arXiv:1909.02487, 2019
5332019
Pushing the frontiers of density functionals by solving the fractional electron problem
J Kirkpatrick, B McMorrow, DHP Turban, AL Gaunt, JS Spencer, ...
Science 374 (6573), 1385-1389, 2021
2862021
On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes
AGG Matthews, J Hensman, RE Turner, Z Ghahramani
The 19th International Conference on Artificial Intelligence and Statistics …, 2016
210*2016
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
J Bradshaw, AGG Matthews, Z Ghahramani
arXiv preprint arXiv:1707.02476, 2017
1972017
Functional Regularisation for Continual Learning with Gaussian Processes
MK Titsias, J Schwarz, AGG Matthews, R Pascanu, YW Teh
International Conference on Learning Representations, 2019
1672019
MCMC for variationally sparse Gaussian processes
J Hensman, AG Matthews, M Filippone, Z Ghahramani
Advances in Neural Information Processing Systems, 1648-1656, 2015
1662015
Measurement and simulation of the effect of compaction on the pore structure and saturated hydraulic conductivity of grassland and arable soil
GP Matthews, GM Laudone, AS Gregory, NRA Bird, AG de G Matthews, ...
Water Resources Research 46 (5), 2010
84*2010
Variational Bayesian dropout: pitfalls and fixes
J Hron, A Matthews, Z Ghahramani
Proceedings of Machine Learning Research, 2018
802018
Scalable Gaussian process inference using variational methods
AGG Matthews
University of Cambridge, 2017
732017
Variational Gaussian Dropout is not Bayesian
J Hron, AGG Matthews, Z Ghahramani
arXiv preprint arXiv:1711.02989, 2017
572017
Annealed flow transport monte carlo
M Arbel, A Matthews, A Doucet
International Conference on Machine Learning, 318-330, 2021
502021
Score-based diffusion meets annealed importance sampling
A Doucet, W Grathwohl, AG Matthews, H Strathmann
Advances in Neural Information Processing Systems 35, 21482-21494, 2022
30*2022
Sample-then-optimize posterior sampling for bayesian linear models
AGG Matthews, J Hron, RE Turner, Z Ghahramani
NeurIPS Workshop on Advances in Approximate Bayesian Inference, 2017
292017
Continual Repeated Annealed Flow transport Monte Carlo
A Matthews, M Arbel, DJ Rezende, A Doucet
International Conference on Machine Learning, 15196-15219, 2022
252022
Aspects of scaling and scalability for flow-based sampling of lattice QCD
R Abbott, MS Albergo, A Botev, D Boyda, K Cranmer, DC Hackett, ...
The European Physical Journal A 59 (11), 257, 2023
172023
A depth filtration model of straining within the void networks of stainless steel filters
JC Price, GP Matthews, K Quinlan, J Sexton, AGG Matthews
AIChE journal 55 (12), 3134-3144, 2009
172009
Sampling QCD field configurations with gauge-equivariant flow models
R Abbott, MS Albergo, A Botev, D Boyda, K Cranmer, DC Hackett, ...
arXiv preprint arXiv:2208.03832, 2022
162022
The system can't perform the operation now. Try again later.
Articles 1–20