Folgen
Matthias Wilms
Titel
Zitiert von
Zitiert von
Jahr
ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
O Maier, BH Menze, J Von der Gablentz, L Häni, MP Heinrich, M Liebrand, ...
Medical image analysis 35, 250-269, 2017
5222017
Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences
O Maier, M Wilms, J von der Gablentz, UM Krämer, TF Münte, H Handels
Journal of neuroscience methods 240, 89-100, 2015
1942015
Training CNNs for image registration from few samples with model-based data augmentation
H Uzunova, M Wilms, H Handels, J Ehrhardt
Medical Image Computing and Computer Assisted Intervention− MICCAI 2017 …, 2017
1382017
Supervised machine learning tools: a tutorial for clinicians
LL Vercio, K Amador, JJ Bannister, S Crites, A Gutierrez, ME MacDonald, ...
Journal of Neural Engineering 17 (6), 062001, 2020
1222020
Statistical shape modeling of the left ventricle: myocardial infarct classification challenge
A Suinesiaputra, P Ablin, X Alba, M Alessandrini, J Allen, W Bai, S Cimen, ...
IEEE journal of biomedical and health informatics 22 (2), 503-515, 2017
932017
Model-based sparse-to-dense image registration for realtime respiratory motion estimation in image-guided interventions
IY Ha, M Wilms, H Handels, MP Heinrich
IEEE Transactions on Biomedical Engineering 66 (2), 302-310, 2018
472018
Multivariate regression approaches for surrogate-based diffeomorphic estimation of respiratory motion in radiation therapy
M Wilms, R Werner, J Ehrhardt, A Schmidt-Richberg, HP Schlemmer, ...
Physics in Medicine & Biology 59 (5), 1147, 2014
402014
Direct visuo-haptic 4D volume rendering using respiratory motion models
D Fortmeier, M Wilms, A Mastmeyer, H Handels
IEEE transactions on haptics 8 (4), 371-383, 2015
392015
Ischemic stroke lesion segmentation in multi-spectral MR images with support vector machine classifiers
O Maier, M Wilms, J von der Gablentz, U Krämer, H Handels
Medical Imaging 2014: Computer-Aided Diagnosis 9035, 21-32, 2014
362014
Multimodal biological brain age prediction using magnetic resonance imaging and angiography with the identification of predictive regions
P Mouches, M Wilms, D Rajashekar, S Langner, ND Forkert
Human brain mapping 43 (8), 2554-2566, 2022
352022
Multi-resolution multi-object statistical shape models based on the locality assumption
M Wilms, H Handels, J Ehrhardt
Medical image analysis 38, 17-29, 2017
342017
Real-Time Ultrasound Simulation for Training of US-Guided Needle Insertion in Breathing Virtual Patients
A Mastmeyer, M Wilms, D Fortmeier, J Schröder, H Handels
Medicine Meets Virtual Reality 22: NextMed/MMVR22 220, 219, 2016
332016
Image features for brain lesion segmentation using random forests
O Maier, M Wilms, H Handels
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries …, 2016
272016
Fully automatic landmarking of syndromic 3D facial surface scans using 2D images
JJ Bannister, SR Crites, JD Aponte, DC Katz, M Wilms, OD Klein, ...
Sensors 20 (11), 3171, 2020
262020
High-resolution T2-FLAIR and non-contrast CT brain atlas of the elderly
D Rajashekar, M Wilms, ME MacDonald, J Ehrhardt, P Mouches, ...
Scientific Data 7 (1), 56, 2020
262020
Interpatient respiratory motion model transfer for virtual reality simulations of liver punctures
A Mastmeyer, M Wilms, H Handels
arXiv preprint arXiv:1707.08554, 2017
232017
Explainable classification of Parkinson’s disease using deep learning trained on a large multi-center database of T1-weighted MRI datasets
M Camacho, M Wilms, P Mouches, H Almgren, R Souza, R Camicioli, ...
NeuroImage: Clinical 38, 103405, 2023
202023
Fairness-related performance and explainability effects in deep learning models for brain image analysis
EAM Stanley, M Wilms, P Mouches, ND Forkert
Journal of Medical Imaging 9 (6), 061102-061102, 2022
202022
A 4D statistical shape model for automated segmentation of lungs with large tumors
M Wilms, J Ehrhardt, H Handels
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012: 15th …, 2012
202012
An analysis of the vulnerability of two common deep learning-based medical image segmentation techniques to model inversion attacks
N Subbanna, M Wilms, A Tuladhar, ND Forkert
Sensors 21 (11), 3874, 2021
192021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20