PDE-GCN: Novel architectures for graph neural networks motivated by partial differential equations M Eliasof, E Haber, E Treister Advances in neural information processing systems 34, 3836-3849, 2021 | 150 | 2021 |
A fast marching algorithm for the factored eikonal equation E Treister, E Haber Journal of Computational Physics 324, 210-225, 2016 | 76 | 2016 |
IMEXnet: A forward stable deep neural network E Haber, K Lensink, E Treister, L Ruthotto International Conference on Machine Learning (ICML) 2019, 2525-2534, 2019 | 52 | 2019 |
A block-coordinate descent approach for large-scale sparse inverse covariance estimation E Treister, JS Turek Advances in neural information processing systems 27, 2014 | 48 | 2014 |
jInv--a flexible Julia package for PDE parameter estimation L Ruthotto, E Treister, E Haber SIAM Journal on Scientific Computing 39 (5), S702–S722, 2017 | 44 | 2017 |
Non-Galerkin multigrid based on sparsified smoothed aggregation. E Treister, I Yavneh SIAM Journal on Scientific Computing (SISC) 37 (1), A30–A54, 2015 | 33 | 2015 |
Multigrid-augmented deep learning preconditioners for the Helmholtz equation Y Azulay, E Treister SIAM Journal on Scientific Computing 45 (3), S127-S151, 2022 | 32 | 2022 |
Square and stretch multigrid for stochastic matrix eigenproblems E Treister, I Yavneh Numerical Linear Algebra with Applications 17 (2‐3), 229-251, 2010 | 31 | 2010 |
pathgcn: Learning general graph spatial operators from paths M Eliasof, E Haber, E Treister International conference on machine learning, 5878-5891, 2022 | 28 | 2022 |
Fast multilevel methods for Markov chains HD Sterck, K Miller, E Treister, I Yavneh Numerical Linear Algebra with Applications 18 (6), 961-980, 2011 | 28 | 2011 |
A multilevel iterated-shrinkage approach to l-1 penalized least-squares minimization E Treister, I Yavneh Signal Processing, IEEE Transactions on 60 (12), 6319-6329, 2012 | 27 | 2012 |
DiffGCN: Graph Convolutional Networks via Differential Operators and Algebraic Multigrid Pooling M Eliasof, E Treister Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS) 2020, 2020 | 26 | 2020 |
Full waveform inversion guided by travel time tomography E Treister, E Haber SIAM Journal on Scientific Computing 39 (5), S587–S609, 2017 | 25 | 2017 |
On-the-fly adaptive smoothed aggregation multigrid for Markov chains E Treister, I Yavneh SIAM Journal on Scientific Computing 33 (5), 2927-2949, 2011 | 23 | 2011 |
Feature Transportation Improves Graph Neural Networks M Eliasof, E Haber, E Treister AAAI Association for the Advancement of Artificial Intelligence, 2024 | 20* | 2024 |
Improving Graph Neural Networks with Learnable Propagation Operators M Eliasof, L Ruthotto, E Treister 40th International Conference on Machine Learning (ICML), 2022 | 18 | 2022 |
NeRN--Learning Neural Representations for Neural Networks M Ashkenazi, Z Rimon, R Vainshtein, S Levi, E Richardson, P Mintz, ... The International Conference on Learning Representations (ICLR) 2023, 2023 | 17 | 2023 |
LeanConvNets: Low-cost Yet Effective Convolutional Neural Networks J Ephrath, M Eliasof, L Ruthotto, E Haber, E Treister IEEE Journal of Selected Topics in Signal Processing 14 (4), 894 - 904, 2020 | 16 | 2020 |
A multilevel framework for sparse optimization with application to inverse covariance estimation and logistic regression E Treister, J Turek, I Yavneh SIAM J. Sci. Comput. 38 (5), S566–S592, 2016 | 13 | 2016 |
Mimetic neural networks: A unified framework for protein design and folding M Eliasof, T Boesen, E Haber, C Keasar, E Treister Frontiers in Bioinformatics 2, 715006, 2022 | 12 | 2022 |