Heiko Zimmermann
Cited by
Cited by
Learning to control redundant musculoskeletal systems with neural networks and SQP: exploiting muscle properties
D Driess, H Zimmermann, S Wolfen, D Suissa, D Haeufle, D Hennes, ...
2018 IEEE International Conference on robotics and automation (ICRA), 6461-6468, 2018
Bayesian functional optimization
NA Vien, H Zimmermann, M Toussaint
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018
Optimality principles in human point-to-manifold reaching accounting for muscle dynamics
I Wochner, D Driess, H Zimmermann, DFB Haeufle, M Toussaint, ...
Frontiers in computational neuroscience 14, 38, 2020
Nested variational inference
H Zimmermann, H Wu, B Esmaeili, JW van de Meent
Advances in Neural Information Processing Systems 34, 20423-20435, 2021
Learning Proposals for Probabilistic Programs with Inference Combinators
S Stites, H Zimmermann, H Wu, E Sennesh, JW van de Meent
arXiv preprint arXiv:2103.00668, 2021
A Variational Perspective on Generative Flow Networks
H Zimmermann, F Lindsten, JW van de Meent, CA Naesseth
arXiv preprint arXiv:2210.07992, 2022
Amortized population gibbs samplers with neural sufficient statistics
H Wu, H Zimmermann, E Sennesh, TA Le, JW Van De Meent
International Conference on Machine Learning 119, 10421--10431, 2020
Probabilistic program inference in network-based epidemiological simulations
N Smedemark-Margulies, R Walters, H Zimmermann, L Laird, ...
PLOS Computational Biology 18 (11), e1010591, 2022
Topological Obstructions and How to Avoid Them
B Esmaeili, R Walters, H Zimmermann, JW van de Meent
Thirty-seventh Conference on Neural Information Processing Systems, 2023
Understanding Optimization Challenges when Encoding to Geometric Structures
B Esmaeili, R Walters, H Zimmermann, JW van de Meent
NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations, 2022
The system can't perform the operation now. Try again later.
Articles 1–10