Olivier Zahm
Cited by
Cited by
A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems∗
M Billaud-Friess, A Nouy, O Zahm
ESAIM: Mathematical Modelling and Numerical Analysis 48 (6), 1777-1806, 2014
Gradient-based dimension reduction of multivariate vector-valued functions
O Zahm, PG Constantine, C Prieur, YM Marzouk
SIAM Journal on Scientific Computing 42 (1), A534-A558, 2020
Certified dimension reduction in nonlinear Bayesian inverse problems
O Zahm, T Cui, K Law, A Spantini, Y Marzouk
arXiv preprint arXiv:1807.03712, 2018
Interpolation of inverse operators for preconditioning parameter-dependent equations
O Zahm, A Nouy
SIAM Journal on Scientific Computing 38 (2), A1044-A1074, 2016
Shared low-dimensional subspaces for propagating kinetic uncertainty to multiple outputs
W Ji, J Wang, O Zahm, YM Marzouk, B Yang, Z Ren, CK Law
Combustion and Flame 190, 146-157, 2018
Greedy inference with structure-exploiting lazy maps
M Brennan, D Bigoni, O Zahm, A Spantini, Y Marzouk
Advances in Neural Information Processing Systems 33, 2020
Multifidelity dimension reduction via active subspaces
RR Lam, O Zahm, YM Marzouk, KE Willcox
SIAM Journal on Scientific Computing 42 (2), A929-A956, 2020
Randomized residual-based error estimators for parametrized equations
K Smetana, O Zahm, AT Patera
SIAM journal on scientific computing 41 (2), A900-A926, 2019
A fast boundary element method for the solution of periodic many-inclusion problems via hierarchical matrix techniques
P Cazeaux, O Zahm
ESAIM: Proceedings and Surveys 48, 156-168, 2015
Projection-based model order reduction methods for the estimation of vector-valued variables of interest
O Zahm, M Billaud-Friess, A Nouy
SIAM Journal on Scientific Computing 39 (4), A1647-A1674, 2017
Randomized residual‐based error estimators for the proper generalized decomposition approximation of parametrized problems
K Smetana, O Zahm
International Journal for Numerical Methods in Engineering 121 (23), 5153-5177, 2020
Model order reduction methods for parameter-dependent equations--Applications in Uncertainty Quantification.
O Zahm
An adaptive transport framework for joint and conditional density estimation
R Baptista, O Zahm, Y Marzouk
arXiv preprint arXiv:2009.10303, 2020
The system can't perform the operation now. Try again later.
Articles 1–13