Johannes C. Paetzold
Cited by
Cited by
Machine learning analysis of whole mouse brain vasculature
MI Todorov*, JC Paetzold*, O Schoppe, G Tetteh, S Shit, V Efremov, ...
Nature Methods 17 (4), 442-449, 2020
Cellular and molecular probing of intact human organs
S Zhao, MI Todorov, R Cai, AIM Rami, H Steinke, E Kemter, H Mai, ...
Cell 180 (4), 796-812. e19, 2020
clDice--a Topology-Preserving Loss Function for Tubular Structure Segmentation
S Shit*, JC Paetzold*, A Sekuboyina, A Zhylka, I Ezhov, A Unger, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images
A Sekuboyina, ME Husseini, A Bayat, M Löffler, H Liebl, H Li, G Tetteh, ...
Medical image analysis 73, 102166, 2021
DiamondGAN: Unified Multi-modal Generative Adversarial Networks for MRI Sequences Synthesis
BM Hongwei Li*, Johannes C. Paetzold*, Anjany Sekuboyina, Florian Kofler ...
International Conference on Medical Image Computing and Computer-Assisted …, 2019
Shape-aware complementary-task learning for multi-organ segmentation
F Navarro, S Shit, I Ezhov, J Paetzold, A Gafita, JC Peeken, SE Combs, ...
International Workshop on Machine Learning in Medical Imaging, 620-627, 2019
An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset
K Payette, P de Dumast, H Kebiri, I Ezhov, JC Paetzold, S Shit, A Iqbal, ...
Scientific Data 8 (1), 1-14, 2021
Verse: a vertebrae labelling and segmentation benchmark
A Sekuboyina, A Bayat, ME Husseini, M Löffler, M Rempfler, J Kukačka, ...
arXiv. org e-Print archive, 2020
Red-GAN: Attacking class imbalance via conditioned generation. Yet another medical imaging perspective.
AB Qasim, I Ezhov, S Shit, O Schoppe, JC Paetzold, A Sekuboyina, ...
Medical Imaging with Deep Learning, 655-668, 2020
Anthropogenic CO2 emissions assessment of Nile Delta using XCO2 and SIF data from OCO-2 satellite
A Shekhar, J Chen, JC Paetzold, F Dietrich, X Zhao, S Bhattacharjee, ...
Environmental Research Letters 15 (9), 095010, 2020
Assessing urban methane emissions using column-observing portable Fourier transform infrared (FTIR) spectrometers and a novel Bayesian inversion framework
TS Jones, JE Franklin, J Chen, F Dietrich, KD Hajny, JC Paetzold, ...
Atmospheric Chemistry and Physics 21 (17), 13131-13147, 2021
A distance-based loss for smooth and continuous skin layer segmentation in optoacoustic images
S Gerl*, JC Paetzold*, H He*, I Ezhov, S Shit, F Kofler, A Bayat, G Tetteh, ...
International Conference on Medical Image Computing and Computer-Assisted …, 2020
Geometry-aware neural solver for fast Bayesian calibration of brain tumor models
I Ezhov, T Mot, S Shit, J Lipkova, JC Paetzold, F Kofler, C Pellegrini, ...
IEEE Transactions on Medical Imaging 41 (5), 1269-1278, 2021
Transfer learning from synthetic data reduces need for labels to segment brain vasculature and neural pathways in 3D
JC Paetzold*, O Schoppe*, R Al-Maskari, G Tetteh, V Efremov, MI Todorov, ...
International Conference on Medical Imaging with Deep Learning--Extended …, 2019
Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient
F Kofler, I Ezhov, F Isensee, F Balsiger, C Berger, M Koerner, J Paetzold, ...
arXiv preprint arXiv:2103.06205, 2021
Proteomics of spatially identified tissues in whole organs
HS Bhatia, AD Brunner, Z Rong, H Mai, M Thielert, R Al-Maskari, ...
BioRxiv, 2021
Inferring the 3D standing spine posture from 2D radiographs
A Bayat, A Sekuboyina, JC Paetzold, C Payer, D Stern, M Urschler, ...
International Conference on Medical Image Computing and Computer-Assisted …, 2020
clDice-a Novel Connectivity-Preserving Loss Function for Vessel Segmentation
JC Paetzold*, S Shit*, I Ezhov, G Tetteh, A Ertürk, B Menze
Medical Imaging Meets NeurIPS 2019, 2019
Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning and Neuroscience
JC Paetzold, J McGinnis, S Shit, I Ezhov, P Büschl, C Prabhakar, ...
Thirty-fifth Conference on Neural Information Processing Systems Datasets …, 2021
Velocity-to-pressure (V2P)-net: inferring relative pressures from time-varying 3D fluid flow velocities
S Shit, D Das, I Ezhov, JC Paetzold, AF Sanches, N Thuerey, BH Menze
International Conference on Information Processing in Medical Imaging, 545-558, 2021
The system can't perform the operation now. Try again later.
Articles 1–20