Dmitry Vetrov
Dmitry Vetrov
Higher School of Economics, Samsung AI Center, Moscow
Bestätigte E-Mail-Adresse bei hse.ru - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Tensorizing neural networks
A Novikov, D Podoprikhin, A Osokin, DP Vetrov
Advances in neural information processing systems, 442-450, 2015
3652015
Evaluation of stability of k-means cluster ensembles with respect to random initialization
LI Kuncheva, DP Vetrov
IEEE transactions on pattern analysis and machine intelligence 28 (11), 1798 …, 2006
3282006
Variational dropout sparsifies deep neural networks
D Molchanov, A Ashukha, D Vetrov
Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017
2692017
Averaging weights leads to wider optima and better generalization
P Izmailov, D Podoprikhin, T Garipov, D Vetrov, AG Wilson
arXiv preprint arXiv:1803.05407, 2018
1342018
Spatially Adaptive Computation Time for Residual Networks
M Figurnov, M Collins, Y Zhu, L Zhang, J Huang, DP Vetrov, ...
1202017
Breaking sticks and ambiguities with adaptive skip-gram
S Bartunov, D Kondrashkin, A Osokin, D Vetrov
artificial intelligence and statistics, 130-138, 2016
1042016
Perforatedcnns: Acceleration through elimination of redundant convolutions
M Figurnov, A Ibraimova, DP Vetrov, P Kohli
Advances in Neural Information Processing Systems, 947-955, 2016
912016
Loss surfaces, mode connectivity, and fast ensembling of dnns
T Garipov, P Izmailov, D Podoprikhin, DP Vetrov, AG Wilson
Advances in Neural Information Processing Systems, 8789-8798, 2018
802018
Structured bayesian pruning via log-normal multiplicative noise
K Neklyudov, D Molchanov, A Ashukha, DP Vetrov
Advances in Neural Information Processing Systems, 6775-6784, 2017
792017
Ultimate tensorization: compressing convolutional and fc layers alike
T Garipov, D Podoprikhin, A Novikov, D Vetrov
arXiv preprint arXiv:1611.03214, 2016
572016
Entangled conditional adversarial autoencoder for de novo drug discovery
D Polykovskiy, A Zhebrak, D Vetrov, Y Ivanenkov, V Aladinskiy, ...
Molecular pharmaceutics 15 (10), 4398-4405, 2018
532018
Spatial inference machines
R Shapovalov, D Vetrov, P Kohli
Proceedings of the IEEE conference on computer vision and pattern …, 2013
422013
A simple baseline for bayesian uncertainty in deep learning
WJ Maddox, P Izmailov, T Garipov, DP Vetrov, AG Wilson
Advances in Neural Information Processing Systems, 13132-13143, 2019
362019
Inferring M-best diverse labelings in a single one
A Kirillov, B Savchynskyy, D Schlesinger, D Vetrov, C Rother
Proceedings of the IEEE International Conference on Computer Vision, 1814-1822, 2015
352015
Fast adaptation in generative models with generative matching networks
S Bartunov, DP Vetrov
arXiv preprint arXiv:1612.02192, 2016
30*2016
Putting MRFs on a tensor train
A Novikov, A Rodomanov, A Osokin, D Vetrov
International Conference on Machine Learning, 811-819, 2014
212014
Variational autoencoder with arbitrary conditioning
O Ivanov, M Figurnov, D Vetrov
arXiv preprint arXiv:1806.02382, 2018
202018
Submodular decomposition framework for inference in associative markov networks with global constraints
A Osokin, D Vetrov, V Kolmogorov
CVPR 2011, 1889-1896, 2011
202011
M-best-diverse labelings for submodular energies and beyond
A Kirillov, D Shlezinger, DP Vetrov, C Rother, B Savchynskyy
Advances in Neural Information Processing Systems, 613-621, 2015
192015
Uncertainty estimation via stochastic batch normalization
A Atanov, A Ashukha, D Molchanov, K Neklyudov, D Vetrov
International Symposium on Neural Networks, 261-269, 2019
172019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20