Follow
Ole Winther
Ole Winther
Biology, Univ of Copenhagen, Genomic Medicine, Rigshospitalet and Technical University of Denmark
Verified email at bio.ku.dk - Homepage
Title
Cited by
Cited by
Year
SignalP 5.0 improves signal peptide predictions using deep neural networks
JJ Almagro Armenteros, KD Tsirigos, CK Sønderby, TN Petersen, ...
Nature biotechnology 37 (4), 420-423, 2019
29222019
Autoencoding beyond pixels using a learned similarity metric
ABL Larsen, SK Sønderby, H Larochelle, O Winther
International conference on machine learning, 1558-1566, 2016
21262016
Ladder variational autoencoders
CK Sønderby, T Raiko, L Maaløe, SK Sønderby, O Winther
Advances in neural information processing systems 29, 2016
888*2016
DeepLoc: prediction of protein subcellular localization using deep learning
JJ Almagro Armenteros, CK Sønderby, SK Sønderby, H Nielsen, ...
Bioinformatics 33 (21), 3387-3395, 2017
8322017
JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update
JC Bryne, E Valen, MHE Tang, T Marstrand, O Winther, I da Piedade, ...
Nucleic acids research 36 (suppl_1), D102-D106, 2007
8062007
Detecting sequence signals in targeting peptides using deep learning
JJA Armenteros, M Salvatore, O Emanuelsson, O Winther, G Von Heijne, ...
Life science alliance 2 (5), 2019
4752019
The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line
Nature genetics 41 (5), 553-562, 2009
4732009
Auxiliary deep generative models
L Maaløe, CK Sønderby, SK Sønderby, O Winther
International conference on machine learning, 1445-1453, 2016
4662016
NetSurfP‐2.0: Improved prediction of protein structural features by integrated deep learning
MS Klausen, MC Jespersen, H Nielsen, KK Jensen, VI Jurtz, ...
Proteins: Structure, Function, and Bioinformatics 87 (6), 520-527, 2019
4382019
SignalP 6.0 predicts all five types of signal peptides using protein language models
F Teufel, JJ Almagro Armenteros, AR Johansen, MH Gíslason, SI Pihl, ...
Nature biotechnology 40 (7), 1023-1025, 2022
4132022
Sequential neural models with stochastic layers
M Fraccaro, SK Sønderby, U Paquet, O Winther
Advances in neural information processing systems 29, 2016
3862016
Gaussian processes for classification: Mean-field algorithms
M Opper, O Winther
Neural computation 12 (11), 2655-2684, 2000
3132000
A disentangled recognition and nonlinear dynamics model for unsupervised learning
M Fraccaro, S Kamronn, U Paquet, O Winther
Advances in neural information processing systems 30, 2017
2862017
Expectation consistent approximate inference.
M Opper, O Winther, MJ Jordan
Journal of Machine Learning Research 6 (12), 2005
2732005
BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis
FO Bagger, D Sasivarevic, SH Sohi, LG Laursen, S Pundhir, CK Sønderby, ...
Nucleic acids research 44 (D1), D917-D924, 2016
2692016
Bayesian non-negative matrix factorization
MN Schmidt, O Winther, LK Hansen
Independent Component Analysis and Signal Separation: 8th International …, 2009
2642009
Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae
B Regenberg, T Grotkjær, O Winther, A Fausbøll, M Åkesson, C Bro, ...
Genome biology 7 (11), 1-13, 2006
2532006
A Bayesian approach to on-line learning
M Opper, O Winther
Cambridge University Press, 1999
2531999
RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells
U Doehn, C Hauge, SR Frank, CJ Jensen, K Duda, JV Nielsen, ...
Molecular cell 35 (4), 511-522, 2009
2262009
Mean-field approaches to independent component analysis
PAFR Højen-Sørensen, O Winther, LK Hansen
Neural Computation 14 (4), 889-918, 2002
2122002
The system can't perform the operation now. Try again later.
Articles 1–20