Follow
Wojciech Samek
Wojciech Samek
Professor at TU Berlin, Head of AI Department at Fraunhofer HHI, BIFOLD Fellow
Verified email at tu-berlin.de - Homepage
Title
Cited by
Cited by
Year
On Pixel-wise Explanations for Non-Linear Classifier Decisions by Layer-wise Relevance Propagation
S Bach, A Binder, G Montavon, F Klauschen, KR Müller, W Samek
PLOS ONE 10 (7), e0130140, 2015
50122015
Methods for interpreting and understanding deep neural networks
G Montavon, W Samek, KR Müller
Digital Signal Processing 73, 1-15, 2018
29622018
Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models
W Samek, T Wiegand, KR Müller
ITU Journal: ICT Discoveries 1 (1), 39-48, 2018
18372018
Explaining nonlinear classification decisions with deep taylor decomposition
G Montavon, S Lapuschkin, A Binder, W Samek, KR Müller
Pattern Recognition 65, 211-222, 2017
16602017
Robust and communication-efficient federated learning from non-iid data
F Sattler, S Wiedemann, KR Müller, W Samek
IEEE Transactions on Neural Networks and Learning Systems 31 (9), 3400-3413, 2020
16042020
Evaluating the visualization of what a deep neural network has learned
W Samek, A Binder, G Montavon, S Lapuschkin, KR Müller
IEEE Transactions on Neural Networks and Learning Systems 28 (11), 2660-2673, 2017
13972017
Explainable AI: Interpreting, explaining and visualizing deep learning
W Samek, G Montavon, A Vedali, LK Hansen, KR Müller
Lecture Notes in Computer Science, Springer 11700, 1-439, 2019
13122019
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
S Lapuschkin, S Wäldchen, A Binder, G Montavon, W Samek, KR Müller
Nature Communications 10, 1096, 2019
11942019
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
W Samek, G Montavon, S Lapuschkin, CJ Anders, KR Müller
Proceedings of the IEEE 109 (3), 247-278, 2021
11662021
Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment
S Bosse, D Maniry, KR Müller, T Wiegand, W Samek
IEEE Transactions on Image Processing 27 (1), 206-219, 2018
11462018
Clustered federated learning: Model-agnostic distributed multi-task optimization under privacy constraints
F Sattler, KR Müller, W Samek
IEEE Transactions on Neural Networks and Learning Systems 32 (8), 3710-3722, 2021
10222021
A unifying review of deep and shallow anomaly detection
L Ruff, JR Kauffmann, RA Vandermeulen, G Montavon, W Samek, M Kloft, ...
Proceedings of the IEEE 109 (5), 756-795, 2021
9542021
Layer-Wise Relevance Propagation: An Overview
G Montavon, A Binder, S Lapuschkin, W Samek, KR Müller
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning 11700 …, 2019
8802019
PTB-XL, a large publicly available electrocardiography dataset
P Wagner, N Strodthoff, RD Bousseljot, D Kreiseler, FI Lunze, W Samek, ...
Scientific Data 7 (1), 1-15, 2020
7782020
Towards explainable artificial intelligence
W Samek, KR Müller
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning 11700 …, 2019
7362019
Artificial Intelligence in Dentistry: Chances and Challenges
F Schwendicke, W Samek, J Krois
Journal of Dental Research 99 (7), 769-774, 2020
6852020
Layer-wise relevance propagation for neural networks with local renormalization layers
A Binder, G Montavon, S Lapuschkin, KR Müller, W Samek
Artificial Neural Networks and Machine Learning – ICANN 2016, LNCS 9887, 63-71, 2016
5422016
Explaining recurrent neural network predictions in sentiment analysis
L Arras, G Montavon, KR Müller, W Samek
EMNLP'17 Workshop on Computational Approaches to Subjectivity, Sentiment …, 2017
4592017
Interpretable deep neural networks for single-trial EEG classification
I Sturm, S Lapuschkin, W Samek, KR Müller
Journal of Neuroscience Methods 274, 141-145, 2016
4312016
iNNvestigate neural networks!
M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, ...
Journal of Machine Learning Research 20 (93), 1-8, 2019
4272019
The system can't perform the operation now. Try again later.
Articles 1–20