Benjamin Säfken
Benjamin Säfken
Data Science & Statistics, Institute of Mathematics, Clausthal University of Technology
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
Smoothing parameter and model selection for general smooth models
SN Wood, N Pya, B Säfken
Journal of the American Statistical Association 111 (516), 1548-1563, 2016
Conditional Model Selection in Mixed-Effects Models with cAIC4
B Säfken, D Rügamer, T Kneib, S Greven
Journal of Statistical Software 99 (8), 2021
A unifying approach to the estimation of the conditional Akaike information in generalized linear mixed models
B Saefken, T Kneib, CS van Waveren, S Greven
Rage against the mean–a review of distributional regression approaches
T Kneib, A Silbersdorff, B Säfken
Econometrics and Statistics 26, 99-123, 2023
Stock price predictions with LSTM neural networks and twitter sentiment
ML Thormann, J Farchmin, C Weisser, RM Kruse, B Säfken, A Silbersdorff
Statistics, Optimization & Information Computing 9 (2), 268-287, 2021
Pseudo-document simulation for comparing LDA, GSDMM and GPM topic models on short and sparse text using Twitter data
C Weisser, C Gerloff, A Thielmann, A Python, A Reuter, T Kneib, B Säfken
Computational statistics 38 (2), 647-674, 2023
cAIC4: Conditional Akaike information criterion for lme4
B Saefken, D Ruegamer, T Kneib, S Greven
R package version 0.3, 2018
Unsupervised document classification integrating web scraping, one-class SVM and LDA topic modelling
A Thielmann, C Weisser, A Krenz, B Säfken
Journal of Applied Statistics 50 (3), 574-591, 2023
Gradient Boosting for Linear Mixed Models
C Griesbach, B Säfken, E Waldmann
The International Journal of Biostatistics, 2021
TTLocVis: A Twitter Topic Location Visualization Package
G Kant, C Weisser, B Säfken
Journal of Open Source Software 5 (54), 2507, 2020
Introductory data science across disciplines, using Python, case studies and industry consulting projects
J Lasser, D Manik, A Silbersdorff, B Säfken, T Kneib
Teaching Statistics, 2020
Structural neural additive models: Enhanced interpretable machine learning
M Luber, A Thielmann, B Säfken
arXiv preprint arXiv:2302.09275, 2023
An iterative topic model filtering framework for short and noisy user-generated data: analyzing conspiracy theories on twitter
G Kant, L Wiebelt, C Weisser, K Kis-Katos, M Luber, B Säfken
International Journal of Data Science and Analytics, 1-21, 2022
Neural additive models for location scale and shape: A framework for interpretable neural regression beyond the mean
AF Thielmann, RM Kruse, T Kneib, B Säfken
International Conference on Artificial Intelligence and Statistics, 1783-1791, 2024
Coherence based document clustering
A Thielmann, C Weisser, T Kneib, B Säfken
2023 IEEE 17th International Conference on Semantic Computing (ICSC), 9-16, 2023
Model averaging for linear mixed models via augmented Lagrangian
RM Kruse, A Silbersdorff, B Säfken
Computational Statistics & Data Analysis 167, 107351, 2022
Community-detection via hashtag-graphs for semi-supervised NMF topic models
M Luber, A Thielmann, C Weisser, B Säfken
arXiv preprint arXiv:2111.10401, 2021
Topics in the Haystack: Enhancing Topic Quality through Corpus Expansion
A Thielmann, A Reuter, Q Seifert, E Bergherr, B Säfken
Computational Linguistics, 1-36, 2024
Identifying topical shifts in twitter streams: an integration of non-negative matrix factorisation, sentiment analysis and structural break models for large scale data
M Luber, C Weisser, B Säfken, A Silbersdorff, T Kneib, K Kis-Katos
Multidisciplinary International Symposium on Disinformation in Open Online …, 2021
Conditional covariance penalties for mixed models
B Säfken, T Kneib
Scandinavian Journal of Statistics 47 (3), 990-1010, 2020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20