Ghada Zamzmi
Titel
Zitiert von
Zitiert von
Jahr
A review of automated pain assessment in infants: features, classification tasks, and databases
G Zamzmi, R Kasturi, D Goldgof, R Zhi, T Ashmeade, Y Sun
IEEE reviews in biomedical engineering 11, 77-96, 2017
332017
An approach for automated multimodal analysis of infants' pain
G Zamzmi, CY Pai, D Goldgof, R Kasturi, T Ashmeade, Y Sun
2016 23rd International Conference on Pattern Recognition (ICPR), 4148-4153, 2016
322016
Machine-based multimodal pain assessment tool for infants: a review
G Zamzmi, D Goldgof, R Kasturi, Y Sun, T Ashmeade
arXiv preprint arXiv:1607.00331, 2016
272016
Pain assessment in infants: Towards spotting pain expression based on infants' facial strain
G Zamzami, G Ruiz, D Goldgof, R Kasturi, Y Sun, T Ashmeade
2015 11th IEEE International Conference and Workshops on Automatic Face and …, 2015
222015
Automated pain assessment in neonates
G Zamzmi, CY Pai, D Goldgof, R Kasturi, Y Sun, T Ashmeade
Scandinavian Conference on Image Analysis, 350-361, 2017
172017
Neonatal pain expression recognition using transfer learning
G Zamzmi, D Goldgof, R Kasturi, Y Sun
arXiv preprint arXiv:1807.01631, 2018
102018
Automatic infants’ pain assessment by dynamic facial representation: effects of profile view, gestational age, gender, and race
R Zhi, GZD Zamzmi, D Goldgof, T Ashmeade, Y Sun
Journal of clinical medicine 7 (7), 173, 2018
102018
Convolutional neural networks for neonatal pain assessment
G Zamzmi, R Paul, MS Salekin, D Goldgof, R Kasturi, T Ho, Y Sun
IEEE Transactions on Biometrics, Behavior, and Identity Science 1 (3), 192-200, 2019
92019
A comprehensive and context-sensitive neonatal pain assessment using computer vision
G Zamzmi, P Chih-Yun, D Goldgof, R Kasturi, T Ashmeade, Y Sun
IEEE Computer Architecture Letters, 1-1, 2019
72019
Multi-channel neural network for assessing neonatal pain from videos
MS Salekin, G Zamzmi, D Goldgof, R Kasturi, T Ho, Y Sun
2019 IEEE International Conference on Systems, Man and Cybernetics (SMC …, 2019
62019
Pain assessment from facial expression: Neonatal convolutional neural network (N-CNN)
G Zamzmi, R Paul, D Goldgof, R Kasturi, Y Sun
2019 International Joint Conference on Neural Networks (IJCNN), 1-7, 2019
62019
Cell Complex Neural Networks
M Hajij, K Istvan, G Zamzami
arXiv preprint arXiv:2010.00743, 2020
42020
Pain evaluation in video using extended multitask learning from multidimensional measurements
X Xu, JS Huang, VR De Sa
Machine Learning for Health Workshop, 141-154, 2020
42020
Infants' Pain Recognition Based on Facial Expression: Dynamic Hybrid Descriptions
R Zhi, G Zamzmi, D Goldgof, T Ashmeade, T Li, Y Sun
IEICE TRANSACTIONS on Information and Systems 101 (7), 1860-1869, 2018
42018
Image Analysis: 20th Scandinavian Conference, SCIA 2017, Tromsø, Norway, June 12–14, 2017, Proceedings, Part I
P Sharma, FM Bianchi
Springer, 2017
42017
Harnessing Machine Intelligence in Automatic Echocardiogram Analysis: Current Status, Limitations, and Future Directions
G Zamzmi, LY Hsu, W Li, V Sachdev, S Antani
IEEE reviews in biomedical engineering, 2020
32020
First investigation into the use of deep learning for continuous assessment of neonatal postoperative pain
MS Salekin, G Zamzmi, D Goldgof, R Kasturi, T Ho, Y Sun
arXiv preprint arXiv:2003.10601, 2020
22020
Automatic multimodal assessment of neonatal pain
G Alzamzmi
University of South Florida, 2018
22018
Machine-based multimodal pain assessment tool for infants: a review. preprint
G Zamzmi, CY Pai, D Goldgof, R Kasturi, Y Sun, T Ashmeade
arXiv preprint arXiv:1607.00331, 2016
22016
Multimodal spatio-temporal deep learning approach for neonatal postoperative pain assessment
MS Salekin, G Zamzmi, D Goldgof, R Kasturi, T Ho, Y Sun
Computers in Biology and Medicine 129, 104150, 2021
12021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20