Thomas Renger
Thomas Renger
Professor der theoretischen Physik, Johannes Kepler Universität Linz
Bestätigte E-Mail-Adresse bei
Zitiert von
Zitiert von
How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria
J Adolphs, T Renger
Biophysical journal 91 (8), 2778-2797, 2006
Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes
T Renger, V May, O Kühn
Physics Reports 343 (3), 137-254, 2001
Intermolecular Coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and …
ME Madjet, A Abdurahman, T Renger
The Journal of Physical Chemistry B 110 (34), 17268-17281, 2006
On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: an estimation of the spectral density and a theory for the calculation of optical spectra
T Renger, RA Marcus
The Journal of chemical physics 116 (22), 9997-10019, 2002
Photosystem II: the machinery of photosynthetic water splitting
G Renger, T Renger
Photosynthesis research 98 (1), 53-80, 2008
α-Helices direct excitation energy flow in the Fenna–Matthews–Olson protein
F Müh, MEA Madjet, J Adolphs, A Abdurahman, B Rabenstein, H Ishikita, ...
Proceedings of the National Academy of Sciences 104 (43), 16862-16867, 2007
The eighth bacteriochlorophyll completes the excitation energy funnel in the FMO protein
M Schmidt am Busch, F Müh, M El-Amine Madjet, T Renger
The journal of physical chemistry letters 2 (2), 93-98, 2011
Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode?
G Raszewski, T Renger
Journal of the American Chemical Society 130 (13), 4431-4446, 2008
Quantum biology revisited
J Cao, RJ Cogdell, DF Coker, HG Duan, J Hauer, U Kleinekathöfer, ...
Science Advances 6 (14), eaaz4888, 2020
Theory of excitation energy transfer: from structure to function
T Renger
Photosynthesis research 102 (2), 471-485, 2009
Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor
G Raszewski, W Saenger, T Renger
Biophysical Journal 88 (2), 986-998, 2005
Calculation of pigment transition energies in the FMO protein
J Adolphs, F Müh, MEA Madjet, T Renger
Photosynthesis research 95 (2), 197-209, 2008
Structure-based identification of energy sinks in plant light-harvesting complex II
F Müh, MEA Madjet, T Renger
The Journal of Physical Chemistry B 114 (42), 13517-13535, 2010
Variable-range hopping electron transfer through disordered bridge states: Application to DNA
T Renger, RA Marcus
The Journal of Physical Chemistry A 107 (41), 8404-8419, 2003
Spectroscopic properties of reaction center pigments in photosystem II core complexes: revision of the multimer model
G Raszewski, BA Diner, E Schlodder, T Renger
Biophysical journal 95 (1), 105-119, 2008
Understanding photosynthetic light-harvesting: a bottom up theoretical approach
T Renger, F Müh
Physical Chemistry Chemical Physics 15 (10), 3348-3371, 2013
Theory of optical spectra involving charge transfer states: dynamic localization predicts a temperature dependent optical band shift
T Renger
Physical review letters 93 (18), 188101, 2004
Normal mode analysis of the spectral density of the Fenna–Matthews–Olson light-harvesting protein: how the protein dissipates the excess energy of excitons
T Renger, A Klinger, F Steinecker, M Schmidt am Busch, J Numata, ...
The Journal of Physical Chemistry B 116 (50), 14565-14580, 2012
Structure-based calculations of optical spectra of photosystem I suggest an asymmetric light-harvesting process
J Adolphs, F Müh, MEA Madjet, MSA Busch, T Renger
Journal of the American Chemical Society 132 (10), 3331-3343, 2010
Ultrafast exciton motion in photosynthetic antenna systems: the FMO-complex
T Renger, V May
The Journal of Physical Chemistry A 102 (23), 4381-4391, 1998
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20