Folgen
David Nebel
David Nebel
CI Group Mittweida
Bestätigte E-Mail-Adresse bei hs-mittweida.de
Titel
Zitiert von
Zitiert von
Jahr
Aspects in classification learning-Review of recent developments in Learning Vector Quantization
M Kaden, M Lange, D Nebel, M Riedel, T Geweniger, T Villmann
Foundations of Computing and Decision Sciences 39 (2), 79-105, 2014
752014
Types of (dis-) similarities and adaptive mixtures thereof for improved classification learning
D Nebel, M Kaden, A Villmann, T Villmann
Neurocomputing 268, 42-54, 2017
362017
Median variants of learning vector quantization for learning of dissimilarity data
D Nebel, B Hammer, K Frohberg, T Villmann
Neurocomputing 169, 295-305, 2015
322015
Rb-Sr dating
O Nebel
Encyclopedia of scientific dating methods, 686-698, 2015
292015
Investigation of activation functions for generalized learning vector quantization
T Villmann, J Ravichandran, A Villmann, D Nebel, M Kaden
Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering …, 2020
212020
Generative versus discriminative prototype based classification
B Hammer, D Nebel, M Riedel, T Villmann
Advances in Self-Organizing Maps and Learning Vector Quantization …, 2014
202014
A median variant of generalized learning vector quantization
D Nebel, B Hammer, T Villmann
International Conference on Neural Information Processing, 19-26, 2013
192013
Rejection strategies for learning vector quantization–a comparison of probabilistic and deterministic approaches
L Fischer, D Nebel, T Villmann, B Hammer, H Wersing
Advances in Self-Organizing Maps and Learning Vector Quantization …, 2014
182014
Differentiable kernels in generalized matrix learning vector quantization
M Kästner, D Nebel, M Riedel, M Biehl, T Villmann
2012 11th International Conference on Machine Learning and Applications 1 …, 2012
162012
Learning vector quantization with adaptive cost-based outlier-rejection
T Villmann, M Kaden, D Nebel, M Biehl
Computer Analysis of Images and Patterns: 16th International Conference …, 2015
142015
Building the library of RNA 3D nucleotide conformations using the clustering approach
T Zok, M Antczak, M Riedel, D Nebel, T Villmann, P Lukasiak, J Blazewicz, ...
International Journal of Applied Mathematics and Computer Science 25 (3 …, 2015
112015
ICMLA Face Recognition Challenge--Results of the Team Computational Intelligence Mittweida
T Villmann, M Kästner, D Nebel, M Riedel
2012 11th International Conference on Machine Learning and Applications 2 …, 2012
102012
Adaptive Hausdorff distances and tangent distance adaptation for transformation invariant classification learning
S Saralajew, D Nebel, T Villmann
Neural Information Processing: 23rd International Conference, ICONIP 2016 …, 2016
92016
Supervised Generative Models for Learning Dissimilarity Data.
D Nebel, B Hammer, T Villmann
ESANN, 2014
92014
Similarities, Dissimilarities and Types of Inner Products for Data Analysis in the Context of Machine Learning: A Mathematical Characterization
T Villmann, M Kaden, D Nebel, A Bohnsack
Artificial Intelligence and Soft Computing: 15th International Conference …, 2016
82016
Adaptive dissimilarity weighting for prototype-based classification optimizing mixtures of dissimilarities.
M Kaden, D Nebel, T Villmann, M Verleysen
ESANN, 2016
72016
Lateral enhancement in adaptive metric learning for functional data
T Villmann, M Kaden, D Nebel, M Riedel
Neurocomputing 131, 23-31, 2014
62014
Activation functions for generalized learning vector quantization-a performance comparison
T Villmann, J Ravichandran, A Villmann, D Nebel, M Kaden
arXiv preprint arXiv:1901.05995, 2019
42019
Non-Euclidean principal component analysis for matrices by Hebbian learning
M Lange, D Nebel, T Villmann
International Conference on Artificial Intelligence and Soft Computing, 77-88, 2014
42014
Median variants of LVQ for optimization of statistical quality measures for classification of dissimilarity data
D Nebel, T Villmann
Machine Learning Reports 8 (MLR-03-2014), 1-25, 2014
32014
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20