Michael Fang
Michael Fang
Bestätigte E-Mail-Adresse bei caltech.edu
Titel
Zitiert von
Zitiert von
Jahr
Qubit architecture with high coherence and fast tunable coupling
Y Chen, C Neill, P Roushan, N Leung, M Fang, R Barends, J Kelly, ...
Physical review letters 113 (22), 220502, 2014
3652014
Ergodic dynamics and thermalization in an isolated quantum system
C Neill, P Roushan, M Fang, Y Chen, M Kolodrubetz, Z Chen, A Megrant, ...
Nature Physics 12 (11), 1037-1041, 2016
1842016
Observation of topological transitions in interacting quantum circuits
P Roushan, C Neill, Y Chen, M Kolodrubetz, C Quintana, N Leung, ...
Nature 515 (7526), 241-244, 2014
1622014
Tunable coupler for superconducting Xmon qubits: Perturbative nonlinear model
MR Geller, E Donate, Y Chen, MT Fang, N Leung, C Neill, P Roushan, ...
Physical Review A 92 (1), 012320, 2015
492015
Global distribution of water vapor and cloud cover—sites for high-performance THz applications
JY Suen, MT Fang, PM Lubin
IEEE Transactions on Terahertz Science and Technology 4 (1), 86-100, 2014
352014
Modeling of terabit geostationary terahertz satellite links from globally dry locations
JY Suen, MT Fang, SP Denny, PM Lubin
IEEE Transactions on Terahertz Science and Technology 5 (2), 299-313, 2015
302015
Al transmon qubits on silicon-on-insulator for quantum device integration
AJ Keller, PB Dieterle, M Fang, B Berger, JM Fink, O Painter
Applied Physics Letters 111 (4), 042603, 2017
202017
Development of Hardware for Scaling Up Superconducting Qubits and Simulation of Quantum Chaos
M Fang
Bachelor’s thesis, University of California, Santa Barbara, 2015
22015
PJJ O′ Malley, CM Quintana, D. Sank, A. Vainsencher, J. Wenner, TC White, MR Geller, AN Cleland, and JM Martinis,“Qubit architecture with high coherence and fast tunable …
Y Chen, C Neill, P Roushan, N Leung, M Fang, R Barends, J Kelly, ...
arXiv preprint arXiv:1402.7367, 0
2
Techniques for transduction and storage of quantum level signals
O Painter, J Luo, MT Fang, A Sipahigil, PB Dieterle, M Kalaee, JM Fink, ...
US Patent 10,858,239, 2020
12020
Superconducting qubits on silicon substrates for quantum device integration
AJ Keller, PB Dieterle, M Fang, B Berger, JM Fink, O Painter
arXiv preprint arXiv:1703.10195, 2017
12017
Classical chaos and its correspondence in superconducting qubits
C Neill, B Campbell, Z Chen, B Chiaro, A Dunsworth, M Fang, I Hoi, ...
APS March Meeting Abstracts 2015, L39. 009, 2015
12015
Metamaterial waveguides and shielded bridges for quantum circuits
O Painter, SMM Niri, EJ Kim, A Sipahigil, VT dos Santos Ferreira, ...
US Patent 10,916,821, 2021
2021
Techniques for bidirectional transduction of quantum level signals between optical and microwave frequencies using a common acoustic intermediary
O Painter, J Luo, MT Fang, A Sipahigil, PB Dieterle, M Kalaee, JM Fink, ...
US Patent 10,858,240, 2020
2020
Suspended Trace Air-Gap Resonators for Low Loss Superconducting Circuits
MT Fang
California Institute of Technology, 2020
2020
Interference between microwave quantum memories
Y Gao, B Lester, S Rosenblum, C Wang, L Frunzio, M Devoret, L Jiang, ...
APS March Meeting Abstracts 2018, Y33. 013, 2018
2018
Controlling the arrow of time in circuit QED
A Keller, N Yunger Halpern, P Dieterle, M Fang, A Sipahigil, O Painter
APS March Meeting Abstracts 2018, K33. 010, 2018
2018
Coupling of transmon qubits to ultra-high Q phononic bandgap acoustic resonators via an intermediate piezoelectric resonator
J Luo, M Fang, O Painter
APS March Meeting Abstracts 2018, C33. 001, 2018
2018
Airbridges for scalable microwave control of superconducting qubits
MT Fang, AJ Keller, OJ Painter
APS March Meeting Abstracts 2017, H46. 004, 2017
2017
Optimizing Hardware Compatibility for Scaling Up Superconducting Qubits
M Fang, B Campbell, Z Chen, B Chiaro, A Dunsworth, J Kelly, A Megrant, ...
APS March Meeting Abstracts 2015, B39. 002, 2015
2015
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20