Wasserstein gan M Arjovsky, S Chintala, L Bottou arXiv preprint arXiv:1701.07875, 2017 | 6453* | 2017 |
Improved training of wasserstein gans I Gulrajani, F Ahmed, M Arjovsky, V Dumoulin, AC Courville Advances in Neural Information Processing Systems, 5767-5777, 2017 | 4321 | 2017 |
Towards Principled Methods for Training Generative Adversarial Networks M Arjovsky, L Bottou arXiv preprint arXiv:1701.04862, 2017 | 1164 | 2017 |
Adversarially learned inference V Dumoulin, I Belghazi, B Poole, O Mastropietro, A Lamb, M Arjovsky, ... arXiv preprint arXiv:1606.00704, 2016 | 976 | 2016 |
Unitary evolution recurrent neural networks M Arjovsky, A Shah, Y Bengio International Conference on Machine Learning, 1120-1128, 2016 | 449 | 2016 |
Invariant Risk Minimization M Arjovsky, L Bottou, I Gulrajani, D Lopez-Paz arXiv preprint arXiv:1907.02893, 2019 | 170 | 2019 |
Symplectic Recurrent Neural Networks Z Chen, J Zhang, M Arjovsky, L Bottou arXiv preprint arXiv:1909.13334, 2019 | 38 | 2019 |
Geometrical insights for implicit generative modeling L Bottou, M Arjovsky, D Lopez-Paz, M Oquab Braverman Readings in Machine Learning. Key Ideas from Inception to Current …, 2018 | 24 | 2018 |
Never Give Up: Learning Directed Exploration Strategies AP Badia, P Sprechmann, A Vitvitskyi, D Guo, B Piot, S Kapturowski, ... arXiv preprint arXiv:2002.06038, 2020 | 23 | 2020 |
Optimizing transcoder quality targets using a neural network with an embedded bitrate model M Covell, M Arjovsky, Y Lin, A Kokaram Electronic Imaging 2016 (2), 1-7, 2016 | 15 | 2016 |
Saddle-free Hessian-free optimization M Arjovsky arXiv preprint arXiv:1506.00059, 2015 | 1 | 2015 |
Low Distortion Block-Resampling with Spatially Stochastic Networks SJ Hong, M Arjovsky, I Thompson, D Barnhardt arXiv preprint arXiv:2006.05394, 2020 | | 2020 |
Linear unit tests for invariance discovery B Aubin, M Arjovsky, L Bottou, D Lopez-Paz | | 2020 |