Katharina Eggensperger
Katharina Eggensperger
PhD Student, Machine Learning Lab, University of Freiburg
Bestätigte E-Mail-Adresse bei informatik.uni-freiburg.de - Startseite
Zitiert von
Zitiert von
Efficient and robust automated machine learning
M Feurer, A Klein, K Eggensperger, J Springenberg, M Blum, F Hutter
Advances in Neural Information Processing Systems, 2962-2970, 2015
Deep learning with convolutional neural networks for brain mapping and decoding of movement-related information from the human EEG
RT Schirrmeister, JT Springenberg, LDJ Fiederer, M Glasstetter, ...
arXiv preprint arXiv:1703.05051, 2017
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters
K Eggensperger, M Feurer, F Hutter, J Bergstra, J Snoek, H Hoos, ...
NeurIPS workshop on Bayesian Optimization in Theory and Practice 10, 2013
Efficient benchmarking of hyperparameter optimizers via surrogates
K Eggensperger, F Hutter, HH Hoos, K Leyton-brown
Proceedings of the 29th AAAI Conference on Artificial Intelligence, 1114-1120, 2015
Practical Automated Machine Learning for the AutoML Challenge 2018
M Feurer, K Eggensperger, S Falkner, M Lindauer, F Hutter
ICML 2018 AutoML Workshop, 2018
Smac v3: Algorithm Configuration in Python
M Lindauer, K Eggensperger, M Feurer, S Falkner, A Biedenkapp, ...
2017, 2017
Efficient Benchmarking of Algorithm Configurators via Model-based Surrogates
K Eggensperger, M Lindauer, HH Hoos, F Hutter, K Leyton-Brown
Machine Learning 101 (1), 15-41, 2018
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
M Feurer, K Eggensperger, S Falkner, M Lindauer, F Hutter
Efficient Parameter Importance Analysis via Ablation with Surrogates
A Biedenkapp, M Lindauer, K Eggensperger, F Hutter, C Fawcett, ...
Proceedings of the AAAI conference, 2017
Pitfalls and Best Practices in Algorithm Configuration
K Eggensperger, M Lindauer, F Hutter
Journal of Artificial Intelligence Research (JAIR) 64, 861-893, 2019
BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters
M Lindauer, K Eggensperger, M Feurer, A Biedenkapp, J Marben, ...
arXiv preprint arXiv:1908.06756, 2019
Neural Networks for Predicting Algorithm Runtime Distributions
K Eggensperger, M Lindauer, F Hutter
Proceedings of the International Joint Conference on Artificial Intelligence …, 2018
Automatic Bone Parameter Estimation for Skeleton Tracking in Optical Motion Capture
T Schubert, K Eggensperger, A Gkogkidis, F Hutter, T Ball, W Burgard
Proceedings of the IEEE International Conference on Robotics and Automation …, 2016
Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters
M Lindauer, M Feurer, K Eggensperger, A Biedenkapp, F Hutter
arXiv preprint arXiv:1908.06674, 2019
Designing and Understanding Convolutional Networks for Decoding Executed Movements from EEG
RT Schirrmeister, LDJ Fiederer, JT Springenberg, M Glasstetter, ...
The First Biannual Neuroadaptive Technology Conference, 143, 2017
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
K Eggensperger, P Müller, N Mallik, M Feurer, R Sass, A Klein, N Awad, ...
arXiv preprint arXiv:2109.06716, 2021
Squirrel: A Switching Hyperparameter Optimizer
N Awad, G Shala, D Deng, N Mallik, M Feurer, K Eggensperger, ...
arXiv preprint arXiv:2012.08180, 2020
Neural Model-based Optimization with Right-Censored Observations
K Eggensperger, K Haase, P Müller, M Lindauer, F Hutter
arXiv preprint arXiv:2009.13828, 2020
Filtering Outliers in Bayesian Optimization
R Martinez-Cantin, K Tee, M McCourt, K Eggensperger
Hyperparameter Optimization for Machine Learning Problems in BCI
A Meinel, K Eggensperger, M Tangermann, F Hutter
Proceedings of the 6th International Brain-Computer Interface Meeting: BCI …, 2016
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20