Folgen
Haitham Bou-Ammar
Haitham Bou-Ammar
RL-Team Leader, BO-Team Leader, MAS-Team Leader @ Huawei London & H. Assistant Professor @ UCL
Bestätigte E-Mail-Adresse bei huawei.com
Titel
Zitiert von
Zitiert von
Jahr
Smarts: An open-source scalable multi-agent rl training school for autonomous driving
M Zhou, J Luo, J Villella, Y Yang, D Rusu, J Miao, W Zhang, M Alban, ...
Conference on robot learning, 264-285, 2021
2172021
Online multi-task learning for policy gradient methods
HB Ammar, E Eaton, P Ruvolo, M Taylor
International conference on machine learning, 1206-1214, 2014
1932014
Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation
AI Cowen-Rivers, W Lyu, R Tutunov, Z Wang, A Grosnit, RR Griffiths, ...
Journal of Artificial Intelligence Research 74, 1269-1349, 2022
176*2022
Controller design for quadrotor uavs using reinforcement learning
H Bou-Ammar, H Voos, W Ertel
2010 IEEE international conference on control applications, 2130-2135, 2010
1322010
An automated measure of mdp similarity for transfer in reinforcement learning
HB Ammar, E Eaton, ME Taylor, DC Mocanu, K Driessens, G Weiss, ...
28th AAAI Conference on Artificial Intelligence, AAAI 2014, 31-37, 2014
1152014
Autonomous cross-domain knowledge transfer in lifelong policy gradient reinforcement learning
HB Ammar, E Eaton, JM Luna, P Ruvolo
Twenty-fourth international joint conference on artificial intelligence, 2015
1042015
Wasserstein robust reinforcement learning
MA Abdullah, H Ren, HB Ammar, V Milenkovic, R Luo, M Zhang, J Wang
arXiv preprint arXiv:1907.13196, 2019
992019
Unsupervised cross-domain transfer in policy gradient reinforcement learning via manifold alignment
HB Ammar, E Eaton, P Ruvolo, M Taylor
Proceedings of the AAAI Conference on Artificial Intelligence 29 (1), 2015
982015
Safe policy search for lifelong reinforcement learning with sublinear regret
HB Ammar, R Tutunov, E Eaton
International Conference on Machine Learning, 2361-2369, 2015
822015
Reinforcement learning transfer via sparse coding
HB Ammar, K Tuyls, ME Taylor, K Driessens, G Weiss
Proceedings of the 11th international conference on autonomous agents and …, 2012
792012
Distributed newton method for large-scale consensus optimization
R Tutunov, H Bou-Ammar, A Jadbabaie
IEEE Transactions on Automatic Control 64 (10), 3983-3994, 2019
752019
Sauté rl: Almost surely safe reinforcement learning using state augmentation
A Sootla, AI Cowen-Rivers, T Jafferjee, Z Wang, DH Mguni, J Wang, ...
International Conference on Machine Learning, 20423-20443, 2022
712022
Theoretically-grounded policy advice from multiple teachers in reinforcement learning settings with applications to negative transfer
Y Zhan, HB Ammar
arXiv preprint arXiv:1604.03986, 2016
672016
High-dimensional Bayesian optimisation with variational autoencoders and deep metric learning
A Grosnit, R Tutunov, AM Maraval, RR Griffiths, AI Cowen-Rivers, L Yang, ...
arXiv preprint arXiv:2106.03609, 2021
612021
Balancing two-player stochastic games with soft q-learning
J Grau-Moya, F Leibfried, H Bou-Ammar
arXiv preprint arXiv:1802.03216, 2018
592018
Evolution of cooperation in arbitrary complex networks
B Ranjbar-Sahraei, H Bou Ammar, D Bloembergen, K Tuyls, G Weiss
Proceedings of the 2014 international conference on Autonomous agents and …, 2014
592014
Toward real-world automated antibody design with combinatorial Bayesian optimization
A Khan, AI Cowen-Rivers, A Grosnit, PA Robert, V Greiff, E Smorodina, ...
Cell Reports Methods 3 (1), 2023
56*2023
Nonlinear tracking and landing controller for quadrotor aerial robots
H Voos, H Bou-Ammar
Control Applications (CCA), 2010 IEEE International Conference on, 2136-2141, 2010
522010
Robot reinforcement learning on the constraint manifold
P Liu, D Tateo, HB Ammar, J Peters
Conference on Robot Learning, 1357-1366, 2022
482022
Factored four way conditional restricted boltzmann machines for activity recognition
DC Mocanu, HB Ammar, D Lowet, K Driessens, A Liotta, G Weiss, K Tuyls
Pattern Recognition Letters 66, 100-108, 2015
482015
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20