The method of fundamental solutions: a meshless method CS Chen, A Karageorghis, YS Smyrlis Dynamic Publishers, 2008 | 182 | 2008 |

The route to chaos for the Kuramoto-Sivashinsky equation DT Papageorgiou, YS Smyrlis Theoretical and Computational Fluid Dynamics 3 (1), 15-42, 1991 | 103 | 1991 |

Some aspects of the method of fundamental solutions for certain harmonic problems YS Smyrlis, A Karageorghis Journal of Scientific Computing 16, 341-371, 2001 | 97 | 2001 |

Implicit–explicit BDF methods for the Kuramoto–Sivashinsky equation G Akrivis, YS Smyrlis Applied numerical mathematics 51 (2-3), 151-169, 2004 | 87 | 2004 |

Predicting chaos for infinite dimensional dynamical systems: the Kuramoto-Sivashinsky equation, a case study. YS Smyrlis, DT Papageorgiou Proceedings of the National Academy of Sciences 88 (24), 11129-11132, 1991 | 84 | 1991 |

A singular function boundary integral method for the Laplace equation GC Georgiou, L Olson, YS Smyrlis Communications in numerical methods in engineering 12 (2), 127-134, 1996 | 71 | 1996 |

Applicability and applications of the method of fundamental solutions YS Smyrlis Mathematics of computation 78 (267), 1399-1434, 2009 | 61 | 2009 |

Nonlinear stability of oscillatory core-annular flow: a generalized Kuramoto-Sivashinsky equation with time periodic coefficients AV Coward, DT Papageorgiout, YS Smyrlis Zeitschrift für angewandte Mathematik und Physik ZAMP 46 (1), 1-39, 1995 | 49 | 1995 |

Numerical analysis of the MFS for certain harmonic problems YS Smyrlis, A Karageorghis ESAIM: Mathematical Modelling and Numerical Analysis 38 (3), 495-517, 2004 | 46 | 2004 |

A matrix decomposition RBF algorithm: approximation of functions and their derivatives A Karageorghis, CS Chen, YS Smyrlis Applied numerical mathematics 57 (3), 304-319, 2007 | 38 | 2007 |

Matrix decomposition MFS algorithms for elasticity and thermo-elasticity problems in axisymmetric domains A Karageorghis, YS Smyrlis Journal of computational and applied mathematics 206 (2), 774-795, 2007 | 37 | 2007 |

Potential field based geometric modelling using the method of fundamental solutions R Tankelevich, G Fairweather, A Karageorghis, YS Smyrlis International journal for numerical methods in engineering 68 (12), 1257-1280, 2006 | 34 | 2006 |

Some aspects of the method of fundamental solutions for certain biharmonic problems YS Smyrlis, A Karageorghis Computer Modeling in Engineering and Sciences 4 (5), 535-550, 2003 | 34 | 2003 |

Computational study of the dispersively modified Kuramoto–Sivashinsky equation G Akrivis, DT Papageorgiou, YS Smyrlis SIAM Journal on Scientific Computing 34 (2), A792-A813, 2012 | 33 | 2012 |

Computational study of chaotic and ordered solutions of the Kuramoto-Sivashinsky equation YS Smyrlis, DT Papageorgiou | 33 | 1996 |

Existence and stability of stationary profiles of the LW scheme YS Smyrlis New York University, 1989 | 31 | 1989 |

The method of fundamental solutions: a weighted least-squares approach YS Smyrlis BIT Numerical Mathematics 46, 163-194, 2006 | 30 | 2006 |

Efficient implementation of the MFS: The three scenarios YS Smyrlis, A Karageorghis Journal of Computational and Applied Mathematics 227 (1), 83-92, 2009 | 28 | 2009 |

A matrix decomposition MFS algorithm for axisymmetric potential problems YS Smyrlis, A Karageorghis Engineering analysis with boundary elements 28 (5), 463-474, 2004 | 28 | 2004 |

Linearly implicit methods for a semilinear parabolic system arising in two-phase flows G Akrivis, DT Papageorgiou, YS Smyrlis IMA journal of numerical analysis 31 (1), 299-321, 2011 | 25 | 2011 |