Discrete Total Variation with Finite Elements and Applications to Imaging M Herrmann, R Herzog, S Schmidt, J Vidal-Núñez, G Wachsmuth Journal of Mathematical Imaging and Vision, 2018 | 34 | 2018 |
Fenchel Duality Theory and a Primal-Dual Algorithm on Riemannian Manifolds R Bergmann, R Herzog, D Tenbrinck, J Vidal-Núñez Foundations of Computational Mathematics 21, 1465-1504, 2019 | 27 | 2019 |
Stable strong Fenchel and Lagrange duality for evenly convex optimization problems MD Fajardo, J Vidal Optimization 65 (9), 1675-1691, 2016 | 18 | 2016 |
Necessary and sufficient conditions for strong Fenchel–Lagrange duality via a coupling conjugation scheme MD Fajardo, J Vidal Journal of Optimization Theory and Applications 176, 57-73, 2018 | 14 | 2018 |
A comparison of alternative c-conjugate dual problems in infinite convex optimization MD Fajardo, J Vidal Optimization 66 (5), 705-722, 2017 | 14 | 2017 |
Lagrange duality for evenly convex optimization problems MD Fajardo, MML Rodríguez, J Vidal Journal of Optimization Theory and Applications 168, 109-128, 2016 | 14 | 2016 |
Analysis and an Interior-Point Approach for TV Image Reconstruction Problems on Smooth Surfaces M Herrmann, R Herzog, H Kröner, S Schmidt, J Vidal SIAM Journal on Imaging Sciences 11 (2), 889-922, 2018 | 11 | 2018 |
Measuring centrality and dispersion in directional datasets: the ellipsoidal cone covering approach A Seeger, J Vidal-Nuñez Journal of Global Optimization 68, 279-306, 2017 | 7 | 2017 |
New Duality Results for Evenly Convex Optimization Problems MD Fajardo, SM Grad, J Vidal Optimization, DOI:https://doi.org/10.1080/02331934.2020.1756287, 2020 | 6 | 2020 |
Discrete Total Variation of the Normal Vector Field as Shape Prior with Applications in Geometric Inverse Problems R Bergmann, M Herrmann, R Herzog, S Schmidt, J Vidal Núñez Inverse Problems (IP), DOI: https://doi.org/10.1088/1361- 6420/ab6d5c, 2020 | 6* | 2020 |
Total Generalized Variation for Piecewise Constant Functions on Triangular Meshes with Applications in Imaging L Baumgärtner, R Bergmann, R Herzog, S Schmidt, J Vidal-Núnez SIAM Journal on Imaging Sciences 16 (1), 313-339, 2023 | 5 | 2023 |
E-Convex Sets and Functions: Properties and Characterizations MD Fajardo, J Vidal Vietnam Journal of Mathematics, DOI: https://doi.org/10.1007/s10013-020-00414-2, 2020 | 4 | 2020 |
On Subdifferentials Via a Generalized Conjugation Scheme: An Application to DC Problems and Optimality Conditions MD Fajardo, J Vidal Set-Valued and Variational Analysis 30, 1313-1331, 2022 | 3 | 2022 |
Mesh Denoising and Inpainting using the Total Variation of the Normal L Baumgärtner, R Bergmann, M Herrmann, R Herzog, S Schmidt, ... arXiv preprint arXiv:2012.11748, 2020 | 3 | 2020 |
Total Variation of the Normal Vector Field as Shape Prior R Bergmann, M Herrmann, R Herzog, S Schmidt, J Vidal-Núñez Inverse Problems (IP), DOI: https://doi.org/10.1088/1361- 6420/ab6d5b, 2020 | 3 | 2020 |
A Calculus for Non-smooth Shape Optimization with Applications to Geometric Inverse Problems M Herrmann, R Herzog, S Schmidt, J Vidal-Núñez Non-Smooth and Complementarity-Based Distributed Parameter Systems …, 2022 | 1* | 2022 |
Lagrange duality on DC evenly convex optimization problems via a generalized conjugation scheme MD Fajardo, J Vidal-Nunez arXiv preprint arXiv:2403.11248, 2024 | | 2024 |
Variation for Piecewise Constant Functions on Triangular Meshes with Applications in Imaging L Baumgartner, R Bergmann, R Herzog, S Schmidt, J Vidal Núñez Society for Industrial and Applied Mathematics, 2023 | | 2023 |
Total Generalized Variation for Piecewise Constant Functions with Applications in Imaging L Baumgärtner, R Bergmann, R Herzog, S Schmidt, J Vidal-Núñez arXiv preprint arXiv:2206.12331, 2022 | | 2022 |
Mesh Denoising and Inpainting using the Total Variation of the Normal and a Shape Newton Approach L Baumgärtner, R Bergmann, R Herzog, S Schmidt, J Vidal-Núñez, ... arXiv e-prints, arXiv: 2012.11748, 2020 | | 2020 |