Folgen
Jose Vidal Nuñez
Titel
Zitiert von
Zitiert von
Jahr
Discrete Total Variation with Finite Elements and Applications to Imaging
M Herrmann, R Herzog, S Schmidt, J Vidal-Núñez, G Wachsmuth
Journal of Mathematical Imaging and Vision, 2018
342018
Fenchel Duality Theory and a Primal-Dual Algorithm on Riemannian Manifolds
R Bergmann, R Herzog, D Tenbrinck, J Vidal-Núñez
Foundations of Computational Mathematics 21, 1465-1504, 2019
272019
Stable strong Fenchel and Lagrange duality for evenly convex optimization problems
MD Fajardo, J Vidal
Optimization 65 (9), 1675-1691, 2016
182016
Necessary and sufficient conditions for strong Fenchel–Lagrange duality via a coupling conjugation scheme
MD Fajardo, J Vidal
Journal of Optimization Theory and Applications 176, 57-73, 2018
142018
A comparison of alternative c-conjugate dual problems in infinite convex optimization
MD Fajardo, J Vidal
Optimization 66 (5), 705-722, 2017
142017
Lagrange duality for evenly convex optimization problems
MD Fajardo, MML Rodríguez, J Vidal
Journal of Optimization Theory and Applications 168, 109-128, 2016
142016
Analysis and an Interior-Point Approach for TV Image Reconstruction Problems on Smooth Surfaces
M Herrmann, R Herzog, H Kröner, S Schmidt, J Vidal
SIAM Journal on Imaging Sciences 11 (2), 889-922, 2018
112018
Measuring centrality and dispersion in directional datasets: the ellipsoidal cone covering approach
A Seeger, J Vidal-Nuñez
Journal of Global Optimization 68, 279-306, 2017
72017
New Duality Results for Evenly Convex Optimization Problems
MD Fajardo, SM Grad, J Vidal
Optimization, DOI:https://doi.org/10.1080/02331934.2020.1756287, 2020
62020
Discrete Total Variation of the Normal Vector Field as Shape Prior with Applications in Geometric Inverse Problems
R Bergmann, M Herrmann, R Herzog, S Schmidt, J Vidal Núñez
Inverse Problems (IP), DOI: https://doi.org/10.1088/1361- 6420/ab6d5c, 2020
6*2020
Total Generalized Variation for Piecewise Constant Functions on Triangular Meshes with Applications in Imaging
L Baumgärtner, R Bergmann, R Herzog, S Schmidt, J Vidal-Núnez
SIAM Journal on Imaging Sciences 16 (1), 313-339, 2023
52023
E-Convex Sets and Functions: Properties and Characterizations
MD Fajardo, J Vidal
Vietnam Journal of Mathematics, DOI: https://doi.org/10.1007/s10013-020-00414-2, 2020
42020
On Subdifferentials Via a Generalized Conjugation Scheme: An Application to DC Problems and Optimality Conditions
MD Fajardo, J Vidal
Set-Valued and Variational Analysis 30, 1313-1331, 2022
32022
Mesh Denoising and Inpainting using the Total Variation of the Normal
L Baumgärtner, R Bergmann, M Herrmann, R Herzog, S Schmidt, ...
arXiv preprint arXiv:2012.11748, 2020
32020
Total Variation of the Normal Vector Field as Shape Prior
R Bergmann, M Herrmann, R Herzog, S Schmidt, J Vidal-Núñez
Inverse Problems (IP), DOI: https://doi.org/10.1088/1361- 6420/ab6d5b, 2020
32020
A Calculus for Non-smooth Shape Optimization with Applications to Geometric Inverse Problems
M Herrmann, R Herzog, S Schmidt, J Vidal-Núñez
Non-Smooth and Complementarity-Based Distributed Parameter Systems …, 2022
1*2022
Lagrange duality on DC evenly convex optimization problems via a generalized conjugation scheme
MD Fajardo, J Vidal-Nunez
arXiv preprint arXiv:2403.11248, 2024
2024
Variation for Piecewise Constant Functions on Triangular Meshes with Applications in Imaging
L Baumgartner, R Bergmann, R Herzog, S Schmidt, J Vidal Núñez
Society for Industrial and Applied Mathematics, 2023
2023
Total Generalized Variation for Piecewise Constant Functions with Applications in Imaging
L Baumgärtner, R Bergmann, R Herzog, S Schmidt, J Vidal-Núñez
arXiv preprint arXiv:2206.12331, 2022
2022
Mesh Denoising and Inpainting using the Total Variation of the Normal and a Shape Newton Approach
L Baumgärtner, R Bergmann, R Herzog, S Schmidt, J Vidal-Núñez, ...
arXiv e-prints, arXiv: 2012.11748, 2020
2020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20