Folgen
Alonso Marco
Titel
Zitiert von
Zitiert von
Jahr
Automatic LQR tuning based on Gaussian process global optimization
A Marco, P Hennig, J Bohg, S Schaal, S Trimpe
2016 IEEE international conference on robotics and automation (ICRA), 270-277, 2016
1892016
Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with Bayesian optimization
A Marco, F Berkenkamp, P Hennig, AP Schoellig, A Krause, S Schaal, ...
2017 IEEE International Conference on Robotics and Automation (ICRA), 1557-1563, 2017
1602017
Data-efficient autotuning with bayesian optimization: An industrial control study
M Neumann-Brosig, A Marco, D Schwarzmann, S Trimpe
IEEE Transactions on Control Systems Technology 28 (3), 730-740, 2019
1062019
Optimizing long-term predictions for model-based policy search
A Doerr, C Daniel, D Nguyen-Tuong, A Marco, S Schaal, T Marc, S Trimpe
Conference on Robot Learning, 227-238, 2017
462017
Model-based policy search for automatic tuning of multivariate PID controllers
A Doerr, D Nguyen-Tuong, A Marco, S Schaal, S Trimpe
2017 IEEE International Conference on Robotics and Automation (ICRA), 5295-5301, 2017
452017
On the design of LQR kernels for efficient controller learning
A Marco, P Hennig, S Schaal, S Trimpe
2017 IEEE 56th Annual Conference on Decision and Control (CDC), 5193-5200, 2017
322017
Gosafe: Globally optimal safe robot learning
D Baumann, A Marco, M Turchetta, S Trimpe
2021 IEEE International Conference on Robotics and Automation (ICRA), 4452-4458, 2021
302021
Robot learning with crash constraints
A Marco, D Baumann, M Khadiv, P Hennig, L Righetti, S Trimpe
IEEE Robotics and Automation Letters 6 (2), 1439-1446, 2021
282021
Gait learning for soft microrobots controlled by light fields
A Von Rohr, S Trimpe, A Marco, P Fischer, S Palagi
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2018
232018
Automatic LQR tuning based on Gaussian process optimization: Early experimental results
A Marco, P Hennig, J Bohg, S Schaal, S Trimpe
Second Machine Learning in Planning and Control of Robot Motion Workshop at …, 2015
132015
Excursion search for constrained bayesian optimization under a limited budget of failures
A Marco, A von Rohr, D Baumann, JM Hernández-Lobato, S Trimpe
arXiv preprint arXiv:2005.07443, 2020
122020
Koopman-based neural lyapunov functions for general attractors
SA Deka, AM Valle, CJ Tomlin
2022 IEEE 61st Conference on Decision and Control (CDC), 5123-5128, 2022
92022
Classified regression for Bayesian optimization: Robot learning with unknown penalties
A Marco, D Baumann, P Hennig, S Trimpe
arXiv preprint arXiv:1907.10383, 2019
32019
Gaussian process optimization for self-tuning control
A Marco Valle
Universitat Politècnica de Catalunya, 2015
22015
Bayesian Optimization in Robot Learning-Automatic Controller Tuning and Sample-Efficient Methods
A Marco-Valle
Universität Tübingen, 2020
12020
Out of Distribution Detection via Domain-Informed Gaussian Process State Space Models
A Marco, E Morley, CJ Tomlin
2023 IEEE 62nd Conference on Decision and Control (CDC), 2023
2023
Learning Robot Controllers under Unknown Failure Penalties using Bayesian Optimization
A Marco, S Trimpe
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–17