Follow
Nicholas Krämer
Title
Cited by
Cited by
Year
Differentiable likelihoods for fast inversion of’likelihood-free’dynamical systems
H Kersting, N Krämer, M Schiegg, C Daniel, M Tiemann, P Hennig
International Conference on Machine Learning, 5198-5208, 2020
162020
Stable Implementation of Probabilistic ODE Solvers
N Krämer, P Hennig
arXiv preprint arXiv:2012.10106, 2020
92020
A probabilistic state space model for joint inference from differential equations and data
J Schmidt, N Krämer, P Hennig
Advances in Neural Information Processing Systems 34, 2021
72021
Probabilistic ODE Solutions in Millions of Dimensions
N Krämer, N Bosch, J Schmidt, P Hennig
arXiv preprint arXiv:2110.11812, 2021
42021
Probabilistic Numerical Method of Lines for Time-Dependent Partial Differential Equations
N Krämer, J Schmidt, P Hennig
International Conference on Artificial Intelligence and Statistics, 625-639, 2022
22022
Linear-Time Probabilistic Solutions of Boundary Value Problems
N Krämer, P Hennig
Advances in Neural Information Processing Systems 34, 2021
22021
ProbNum: Probabilistic Numerics in Python
J Wenger, N Krämer, M Pförtner, J Schmidt, N Bosch, N Effenberger, ...
arXiv preprint arXiv:2112.02100, 2021
22021
Numerical uncertainty can critically affect simulations of mechanistic models in neuroscience
J Oesterle, N Krämer, P Hennig, P Berens
bioRxiv, 2021
12021
Probabilistic solvers enable a straight-forward exploration of numerical uncertainty in neuroscience models
J Oesterle, N Krämer, P Hennig, P Berens
bioRxiv, 2021
2021
The system can't perform the operation now. Try again later.
Articles 1–9