Disentangled graph collaborative filtering X Wang, H Jin, A Zhang, X He, T Xu, TS Chua Proceedings of the 43rd international ACM SIGIR conference on research and …, 2020 | 189 | 2020 |
Discovering invariant rationales for graph neural networks YX Wu, X Wang, A Zhang, X He, TS Chua arXiv preprint arXiv:2201.12872, 2022 | 41 | 2022 |
Towards multi-grained explainability for graph neural networks X Wang, Y Wu, A Zhang, X He, TS Chua Advances in Neural Information Processing Systems 34, 18446-18458, 2021 | 25 | 2021 |
Let invariant rationale discovery inspire graph contrastive learning S Li, X Wang, A Zhang, Y Wu, X He, TS Chua International Conference on Machine Learning, 13052-13065, 2022 | 9 | 2022 |
Reinforced causal explainer for graph neural networks X Wang, Y Wu, A Zhang, F Feng, X He, TS Chua IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022 | 8 | 2022 |
Causal screening to interpret graph neural networks X Wang, Y Wu, A Zhang, X He, T Chua | 4 | 2021 |
A-fmi: Learning attributions from deep networks via feature map importance A Zhang, X Wang, C Fang, J Shi, T Chua, Z Chen arXiv preprint arXiv:2104.05527, 2021 | 3 | 2021 |
CrossCBR: Cross-view Contrastive Learning for Bundle Recommendation Y Ma, Y He, A Zhang, X Wang, TS Chua arXiv preprint arXiv:2206.00242, 2022 | 2 | 2022 |
Deconfounding to explanation evaluation in graph neural networks X Wang, A Zhang, X Hu, F Feng, X He, TS Chua arXiv preprint arXiv:2201.08802, 2022 | 1 | 2022 |
Adversarial Causal Augmentation for Graph Covariate Shift Y Sui, X Wang, J Wu, A Zhang, X He arXiv preprint arXiv:2211.02843, 2022 | | 2022 |
Incorporating Bias-aware Margins into Contrastive Loss for Collaborative Filtering A Zhang, W Ma, X Wang, TS Chua arXiv preprint arXiv:2210.11054, 2022 | | 2022 |
Differentiable Invariant Causal Discovery Y Wang, A Zhang, X Wang, X He, TS Chua arXiv preprint arXiv:2205.15638, 2022 | | 2022 |
Cooperative Explanations of Graph Neural Networks J Fang, X Wang, A Zhang, Z Liu, X He, TS Chua | | 2018 |