Folgen
Difan Zou
Titel
Zitiert von
Zitiert von
Jahr
Improving adversarial robustness requires revisiting misclassified examples
Y Wang, D Zou, J Yi, J Bailey, X Ma, Q Gu
International conference on learning representations, 2019
8462019
Gradient descent optimizes over-parameterized deep ReLU networks
D Zou, Y Cao, D Zhou, Q Gu
Machine learning 109, 467-492, 2020
7762020
Layer-dependent importance sampling for training deep and large graph convolutional networks
D Zou, Z Hu, Y Wang, S Jiang, Y Sun, Q Gu
Advances in neural information processing systems 32, 2019
3562019
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States
EY Cramer, EL Ray, VK Lopez, J Bracher, A Brennen, ...
Proceedings of the National Academy of Sciences 119 (15), e2113561119, 2022
321*2022
An improved analysis of training over-parameterized deep neural networks
D Zou, Q Gu
NeurIPS 2018, 2019
2792019
Global convergence of Langevin dynamics based algorithms for nonconvex optimization
P Xu, J Chen, D Zou, Q Gu
Advances in Neural Information Processing Systems 31, 2018
2352018
Ensemble forecasts of coronavirus disease 2019 (COVID-19) in the US
EL Ray, N Wattanachit, J Niemi, AH Kanji, K House, EY Cramer, J Bracher, ...
MedRXiv, 2020.08. 19.20177493, 2020
2192020
How much over-parameterization is sufficient to learn deep ReLU networks?
Z Chen, Y Cao, D Zou, Q Gu
arXiv preprint arXiv:1911.12360, 2019
1452019
Epidemic model guided machine learning for COVID-19 forecasts in the United States
D Zou, L Wang, P Xu, J Chen, W Zhang, Q Gu
MedRxiv, 2020.05. 24.20111989, 2020
1232020
The united states covid-19 forecast hub dataset
EY Cramer, Y Huang, Y Wang, EL Ray, M Cornell, J Bracher, A Brennen, ...
Scientific data 9 (1), 462, 2022
1072022
A pre-registered short-term forecasting study of COVID-19 in Germany and Poland during the second wave
J Bracher, D Wolffram, J Deuschel, K Görgen, JL Ketterer, A Ullrich, ...
Nature communications 12 (1), 5173, 2021
91*2021
Benign overfitting of constant-stepsize sgd for linear regression
D Zou, J Wu, V Braverman, Q Gu, S Kakade
Conference on Learning Theory, 4633-4635, 2021
712021
A 1Mbps real-time NLOS UV scattering communication system with receiver diversity over 1km
G Wang, K Wang, C Gong, D Zou, Z Jiang, Z Xu
IEEE Photonics Journal 10 (2), 1-13, 2018
652018
Information security risks outside the laser beam in terrestrial free-space optical communication
D Zou, Z Xu
IEEE Photonics Journal 8 (5), 1-9, 2016
622016
How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression?
J Wu, D Zou, Z Chen, V Braverman, Q Gu, PL Bartlett
ICLR 2024, 2024
572024
Understanding the generalization of adam in learning neural networks with proper regularization
D Zou, Y Cao, Y Li, Q Gu
ICLR 2023, 2023
532023
Faster convergence of stochastic gradient langevin dynamics for non-log-concave sampling
D Zou, P Xu, Q Gu
Uncertainty in Artificial Intelligence, 1152-1162, 2021
502021
Multiple models for outbreak decision support in the face of uncertainty
K Shea, RK Borchering, WJM Probert, E Howerton, TL Bogich, SL Li, ...
Proceedings of the National Academy of Sciences 120 (18), e2207537120, 2023
48*2023
Characterization on practical photon counting receiver in optical scattering communication
D Zou, C Gong, K Wang, Z Xu
IEEE Transactions on Communications 67 (3), 2203-2217, 2018
482018
Direction matters: On the implicit bias of stochastic gradient descent with moderate learning rate
J Wu, D Zou, V Braverman, Q Gu
arXiv preprint arXiv:2011.02538, 2020
442020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20