Seong Tae Kim
Seong Tae Kim
Assistant Professor of Computer Science, Kyung Hee University
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
TeCNO: Surgical Phase Recognition with Multi-Stage Temporal Convolutional Networks
T Czempiel, M Paschali, M Keicher, W Simson, H Feussner, ST Kim, ...
International Conference on Medical Image Computing and Computer-Assisted …, 2020
Latent feature representation with 3-D multi-view deep convolutional neural network for bilateral analysis in digital breast tomosynthesis
DH Kim, ST Kim, YM Ro
IEEE International Conference on Acoustics, Speech and Signal Processing …, 2016
OperA: Attention-Regularized Transformers for Surgical Phase Recognition
T Czempiel, M Paschali, D Ostler, ST Kim, B Busam, N Navab
International Conference on Medical Image Computing and Computer-Assisted …, 2021
Generation of multimodal justification using visual word constraint model for explainable computer-aided diagnosis
H Lee, ST Kim, YM Ro
Interpretability of Machine Intelligence in Medical Image Computing and …, 2019
Implementation of multimodal biometric recognition via multi-feature deep learning networks and feature fusion
LCO Tiong, ST Kim, YM Ro
Multimedia Tools and Applications 78, 22743-22772, 2019
ICADx: interpretable computer aided diagnosis of breast masses
ST Kim, H Lee, HG Kim, YM Ro
Medical Imaging 2018: Computer-Aided Diagnosis 10575, 450-459, 2018
A deep facial landmarks detection with facial contour and facial components constraint
WJ Baddar, J Son, DH Kim, ST Kim, YM Ro
2016 IEEE International Conference on Image Processing (ICIP), 3209-3213, 2016
Force-ultrasound fusion: Bringing spine robotic-us to the next “level”
M Tirindelli, M Victorova, J Esteban, ST Kim, D Navarro-Alarcon, ...
IEEE Robotics and Automation Letters 5 (4), 5661-5668, 2020
Visually interpretable deep network for diagnosis of breast masses on mammograms
ST Kim, JH Lee, H Lee, YM Ro
Physics in Medicine & Biology 63 (23), 235025, 2018
Latent feature representation with depth directional long-term recurrent learning for breast masses in digital breast tomosynthesis
DH Kim, ST Kim, JM Chang, YM Ro
Physics in Medicine & Biology 62 (3), 1009, 2017
Multimodal facial biometrics recognition: Dual-stream convolutional neural networks with multi-feature fusion layers
LCO Tiong, ST Kim, YM Ro
Image and Vision Computing, 103977, 2020
Neural response interpretation through the lens of critical pathways
A Khakzar, S Baselizadeh, S Khanduja, C Rupprecht, ST Kim, N Navab
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
Attended Relation Feature Representation of Facial Dynamics for Facial Authentication
ST Kim, YM Ro
IEEE Transactions on Information Forensics and Security 14 (7), 1768-1778, 2019
Lightweight and effective facial landmark detection using adversarial learning with face geometric map generative network
HJ Lee, ST Kim, H Lee, YM Ro
IEEE Transactions on Circuits and Systems for Video Technology 30 (3), 771-780, 2019
Breast mass detection using slice conspicuity in 3D reconstructed digital breast volumes
ST Kim, DH Kim, YM Ro
Physics in medicine and biology 59 (17), 5003-5023, 2014
Spatio-temporal representation for face authentication by using multi-task learning with human attributes
ST Kim, DH Kim, YM Ro
2016 IEEE International Conference on Image Processing (ICIP), 2996-3000, 2016
Facial dynamic modelling using long short-term memory network: Analysis and application to face authentication
ST Kim, DH Kim, YM Ro
2016 IEEE 8th International Conference on Biometrics Theory, Applications …, 2016
Self-Supervised Out-of-Distribution Detection in Brain CT Scans
AR Venkatakrishnan, ST Kim, R Eisawy, F Pfister, N Navab
NeurIPS Workshop, 2020
Differential generative adversarial networks: Synthesizing non-linear facial variations with limited number of training data
G Gu, ST Kim, K Kim, WJ Baddar, YM Ro
arXiv preprint arXiv:1711.10267, 2017
Generation of conspicuity-improved synthetic image from digital breast tomosynthesis
ST Kim, DH Kim, YM Ro
2014 19th International Conference on Digital Signal Processing, 395-399, 2014
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20