Follow
S. Karthik Mukkavilli
Title
Cited by
Cited by
Year
Tackling climate change with machine learning
D Rolnick, PL Donti, LH Kaack, K Kochanski, A Lacoste, K Sankaran, ...
ACM Computing Surveys (CSUR) 55 (2), 1-96, 2022
1264*2022
Drawdown: The most comprehensive plan ever proposed to reverse global warming
P Hawken, C Frischmann, K Wilkinson, R Allard, K Bayuk, JP Gouveia, ...
Penguin, 2017
10282017
Foundation Models for Generalist Geospatial Artificial Intelligence
J Jakubik, S Roy, CE Phillips, P Fraccaro, D Godwin, B Zadrozny, ...
arXiv preprint arXiv: 2310.18660, 2023
932*2023
Assessment of atmospheric aerosols from two reanalysis products over Australia
SK Mukkavilli, AA Prasad, RA Taylor, J Huang, RM Mitchell, A Troccoli, ...
Atmospheric research 215, 149-164, 2019
542019
Visualizing the consequences of climate change using cycle-consistent adversarial networks
V Schmidt, A Luccioni, SK Mukkavilli, N Balasooriya, K Sankaran, ...
International Conference on Learning Representations (ICLR), AI for Social …, 2019
532019
Mesoscale simulations of Australian direct normal irradiance, featuring an extreme dust event
SK Mukkavilli, AA Prasad, RA Taylor, A Troccoli, MJ Kay
Journal of Applied Meteorology and Climatology 57 (3), 493-515, 2018
202018
AI Foundation Models for Weather and Climate: Applications, Design, and Implementation
S Karthik Mukkavilli, D Salles Civitarese, J Schmude, J Jakubik, A Jones, ...
arXiv preprint arXiv: 2309.10808, 2023
19*2023
Strategic foresight to applications of artificial intelligence to achieve water-related sustainable development goals
H Mehmood, SK Mukkavilli, I Weber, A Koshio, C Meechaiya, T Piman, ...
United Nations University Institute for Water, Environment an d Health …, 2020
112020
INDUS: Effective and Efficient Language Models for Scientific Applications
B Bhattacharjee, A Trivedi, M Muraoka, M Ramasubramanian, ...
arXiv preprint arXiv:2405.10725, 2024
42024
Lifelines for a Drowning Science‐Improving Findability and Synthesis of Hydrologic Publications
L Stein, SK Mukkavilli, T Wagener
Hydrological Processes, e14742, 2022
42022
Predicting ice flow using machine learning
Y Min, SK Mukkavilli, Y Bengio
Neural Information Processing Systems (NeurIPS), Tackling Climate Change …, 2019
4*2019
Deep learning for Aerosol Forecasting
C Hoyne, SK Mukkavilli, D Meger
Neural Information Processing Systems (NeurIPS), Machine Learning and the …, 2019
42019
EnviroNet: ImageNet for Environment
SK Mukkavilli, P Tissot, A Ganguly, L Joppa, D Meger, G Dudek
18th Conference on Artificial and Computational Intelligence and its …, 2019
4*2019
AI-driven autonomous microrobots for targeted medicine
M Medany, SK Mukkavilli, D Ahmed
Nature Reviews Bioengineering, 2024
12024
Generative large eddy simulations with conditional variational autoencoders
SK Mukkavilli, MS Pritchard, KG Pressel, G Mooers, PL Ma, S Mandt
AGU Fall Meeting Abstracts 2020, A043-0009, 2020
12020
Investigating Australian dust aerosol spatiotemporal effects on direct normal irradiance forecasts
SK Mukkavilli
https://www.unsworks.unsw.edu.au/primo-explore/fulldisplay/unsworks_58614 …, 2018
12018
Enhancing Wind Downscaling with Foundation Models
DS Civitarese, JLG Diaz, K Mukkavilli, J Schmude, D Brunet, S Breton, ...
American Geophysical Union Fall Meeting, 2024
2024
Higher Order Graph Attention Probabilistic Walk Networks
T Bailie, YS Koh, K Mukkavilli
arXiv preprint arXiv:2411.12052, 2024
2024
Wealth over Woe: Global biases in hydro‐hazard research
L Stein, SK Mukkavilli, BM Pfitzmann, PWJ Staar, U Ozturk, C Berrospi, ...
Earth's Future 12 (10), e2024EF004590, 2024
2024
On the development of artificial intelligence downscaling applications for medium-range forecasts of weather elements at CCMEP
C Saad, D Brunet, M Surcel, J Schmude, DS Civitarese, K Mukkavilli, ...
The Canadian Meteorological and Oceanographic Society (CMOS) Congress, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–20