Alexander Schwarz
Alexander Schwarz
Akademischer Oberrat, Universität Duisburg-Essen
Bestätigte E-Mail-Adresse bei uni-due.de - Startseite
Titel
Zitiert von
Zitiert von
Jahr
A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth
T Ricken, A Schwarz, J Bluhm
Computational materials science 39 (1), 124-136, 2007
432007
A finite element method for contact using a third medium
P Wriggers, J Schröder, A Schwarz
Computational Mechanics 52 (4), 837-847, 2013
382013
A modified least‐squares mixed finite element with improved momentum balance
A Schwarz, J Schröder, G Starke
International journal for numerical methods in engineering 81 (3), 286-306, 2010
352010
Least‐squares mixed finite elements for small strain elasto‐viscoplasticity
A Schwarz, J Schröder, G Starke
International journal for numerical methods in engineering 77 (10), 1351-1370, 2009
292009
A first-order system least squares method for hyperelasticity
B Müller, G Starke, A Schwarz, J Schröder
SIAM Journal on Scientific Computing 36 (5), B795-B816, 2014
192014
Analysis of a modified first-order system least squares method for linear elasticity with improved momentum balance
G Starke, A Schwarz, J Schröder
SIAM journal on numerical analysis 49 (3), 1006-1022, 2011
162011
Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity
A Schwarz, K Steeger, J Schröder
Computational Mechanics 54 (3), 603-612, 2014
142014
Efficient stress–velocity least-squares finite element formulations for the incompressible Navier–Stokes equations
C Nisters, A Schwarz
Computer Methods in Applied Mechanics and Engineering 341, 333-359, 2018
102018
Least-squares mixed finite element formulations for isotropic and anisotropic elasticity at small and large strains
J Schröder, A Schwarz, K Steeger
Advanced Finite Element Technologies, 131-175, 2016
102016
A Prange–Hellinger–Reissner type finite element formulation for small strain elasto-plasticity
J Schröder, M Igelbüscher, A Schwarz, G Starke
Computer Methods in Applied Mechanics and Engineering 317, 400-418, 2017
82017
Performance aspects of a mixed s‐v LSFEM for the incompressible Navier‐Stokes equations with improved mass conservation
A Schwarz, J Schröder, S Serdas, S Turek, A Ouazzi, M Nickaeen
PAMM 13 (1), 513-514, 2013
82013
Least-squared Mixed Finite Elements for Solid Mechanics
A Schwarz
Universität Duisburg-Essen, 2009
82009
A comparative study of mixed least-squares FEMs for the incompressible Navier-Stokes equations
A Schwarz, M Nickaeen, S Serdas, C Nisters, A Ouazzi, J Schröder, ...
International Journal of Computational Science and Engineering 17 (1), 80-97, 2018
62018
Different approaches for mixed LSFEMs in hyperelasticity: Application of logarithmic deformation measures
A Schwarz, K Steeger, M Igelbüscher, J Schröder
International Journal for Numerical Methods in Engineering 115 (9), 1138-1153, 2018
52018
A stress‐velocity least‐squares mixed finite element formulation for incompressible elastodynamics
C Nisters, A Schwarz, K Steeger, J Schröder
PAMM 15 (1), 217-218, 2015
52015
Least-squares mixed finite elements for hyperelastic material models
A Schwarz, J Schröder, G Starke, K Steeger
Report of the Workshop 1207, 470-472, 2012
52012
Stress-displacement least squares mixed finite element approximation for hyperelastic materials
G Starke, B Müller, A Schwarz, J Schröder
Report of the Workshop 1207, 467-469, 2012
52012
A mixed least‐squares formulation of the Navier‐Stokes equations for incompressible Newtonian fluid flow
A Schwarz, J Schröder
PAMM 11 (1), 589-590, 2011
52011
A triphasic theory for growth in biological tissue–basics and applications
T Ricken, A Schwarz, J Bluhm
Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung …, 2006
52006
Internat. J. Numer. Methods Engrg. 81, 286‐306 (2010).
A Schwarz, J Schröder, G Starke
5
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20