Arnaud Joly
Arnaud Joly
在 ulg.ac.be 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
API design for machine learning software: experiences from the scikit-learn project
L Buitinck, G Louppe, M Blondel, F Pedregosa, A Mueller, O Grisel, ...
arXiv preprint arXiv:1309.0238, 2013
9452013
L1-based compression of random forest models
A Joly, F Schnitzler, P Geurts, L Wehenkel
20th European symposium on artificial neural networks, 2012
272012
Random forests with random projections of the output space for high dimensional multi-label classification
A Joly, P Geurts, L Wehenkel
Joint European conference on machine learning and knowledge discovery in …, 2014
252014
Sepsis prediction in critically ill patients by platelet activation markers on ICU admission: a prospective pilot study
N Layios, C Delierneux, A Hego, J Huart, C Gosset, C Lecut, N Maes, ...
Intensive care medicine experimental 5 (1), 32, 2017
152017
API design for machine learning software: experiences from the scikit-learn project. 2013
L Buitinck, G Louppe, M Blondel, F Pedregosa, A Mueller, O Grisel, ...
URL: https://dtai. cs. kuleuven. be/events/lml2013/papers …, 2017
112017
Simple connectome inference from partial correlation statistics in calcium imaging
A Sutera, A Joly, V François-Lavet, A Qiu, G Louppe, D Ernst, P Geurts
Neural Connectomics Workshop, 23-35, 2015
102015
ECML PKDD Workshop: Languages for Data Mining and Machine Learning
L Buitinck, G Louppe, M Blondel, F Pedregosa, A Mueller, O Grisel, ...
API Design for Machine Learning Software: Experiences from the Scikit-Learn …, 2013
82013
Globally induced forest: A prepruning compression scheme
JM Begon, A Joly, P Geurts
International Conference on Machine Learning, 420-428, 2017
62017
Exploiting random projections and sparsity with random forests and gradient boosting methods
A Joly
arXiv preprint arXiv:1704.08067, 2016
62016
Exploiting random projections and sparsity with random forests and gradient boosting methods--Application to multi-label and multi-output learning, random forest model …
A Joly
arXiv preprint arXiv:1704.08067, 2017
52017
ArnaudJoly, Brian Holt, and Gaël Varoquaux. 2013. API design for machine learning software: experiences from the scikit-learn project
L Buitinck, G Louppe, M Blondel, F Pedregosa, A Mueller, O Grisel, ...
ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 0
3
Gradient tree boosting with random output projections for multi-label classification and multi-output regression
A Joly, L Wehenkel, P Geurts
arXiv preprint arXiv:1905.07558, 2019
22019
Joint learning and pruning of decision forests
JM Begon, A Joly, P Geurts
12016
CopyCat: Many-to-Many Fine-Grained Prosody Transfer for Neural Text-to-Speech
S Karlapati, A Moinet, A Joly, V Klimkov, D Sáez-Trigueros, T Drugman
arXiv preprint arXiv:2004.14617, 2020
2020
Prospective immune profiling in critically ill adults: before, during and after severe sepsis and septic shock
N Layios
Critical Care 19 (1), 1-201, 2015
2015
Elevated basal levels of circulating activated platelets predict ICU-acquired sepsis and mortality: a prospective study
N Layios
Critical Care 19 (1), 1-201, 2015
2015
Elevated basal levels of platelet-bound fibrinogen predict the occurrence of sepsis in ICU: a prospective study.
C Delierneux, N LAYIOS, A Hego, J HUART, A Joly, P Geurts, P DAMAS, ...
2015
Prospective analysis of platelet activation markers to predict severe infection and mortality in intensive care units
C Delierneux, N LAYIOS, A Hego, J HUART, A Joly, P Geurts, P DAMAS, ...
2015
Scikit-Learn: Machine Learning in the Python ecosystem
A Joly, G Louppe
2014
Pruning randomized trees with L1-norm regularization
A Joly, F Schnitzler, P Geurts, L Wehenkel
2011
系统目前无法执行此操作,请稍后再试。
文章 1–20