Fabian Eitel
Fabian Eitel
Freelancing Machine Learning Scientist; former PhD Candidate at Charité Berlin
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer's disease classification
M Böhle, F Eitel, M Weygandt, K Ritter
Frontiers in aging neuroscience 11, 194, 2019
Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation
F Eitel, E Soehler, J Bellmann-Strobl, AU Brandt, K Ruprecht, RM Giess, ...
NeuroImage: Clinical 24, 102003, 2019
Visualizing convolutional networks for MRI-based diagnosis of Alzheimer’s disease
J Rieke, F Eitel, M Weygandt, JD Haynes, K Ritter
Understanding and Interpreting Machine Learning in Medical Image Computing …, 2018
Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer’s disease classification
F Eitel, K Ritter, Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Interpretability of Machine Intelligence in Medical Image Computing and …, 2019
Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research
F Eitel, MA Schulz, M Seiler, H Walter, K Ritter
Experimental Neurology 339, 113608, 2021
Harnessing spatial MRI normalization: patch individual filter layers for CNNs
F Eitel, JP Albrecht, F Paul, K Ritter
arXiv preprint arXiv:1911.06278, 2019
Visualizing evidence for Alzheimer’s disease in deep neural networks trained on structural MRI data
M Böhle, F Eitel, M Weygandt, K Ritter
arXiv preprint arXiv:1903.07317, 2019
Mri image registration considerably improves CNN-based disease classification
M Klingenberg, D Stark, F Eitel, K Ritter, ...
Machine Learning in Clinical Neuroimaging: 4th International Workshop, MLCN …, 2021
Altered coupling of psychological relaxation and regional volume of brain reward areas in multiple sclerosis
K Wakonig, F Eitel, K Ritter, S Hetzer, T Schmitz-Hübsch, ...
Frontiers in Neurology 11, 568850, 2020
Predicting fluid intelligence in adolescent brain MRI data: An ensemble approach
S Srivastava, F Eitel, K Ritter
Challenge in Adolescent Brain Cognitive Development Neurocognitive …, 2019
Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data
F Eitel, JP Albrecht, M Weygandt, F Paul, K Ritter
Scientific reports 11 (1), 24447, 2021
Prediction of high and low disease activity in early MS patients using multiple kernel learning identifies importance of lateral ventricle intensity
C Chien, M Seiler, F Eitel, T Schmitz-Hübsch, F Paul, K Ritter
Multiple Sclerosis Journal–Experimental, Translational and Clinical 8 (3 …, 2022
Feature visualization for convolutional neural network models trained on neuroimaging data
F Eitel, A Melkonyan, K Ritter
arXiv preprint arXiv:2203.13120, 2022
Evaluating saliency methods on artificial data with different background types
C Budding, F Eitel, K Ritter, S Haufe
arXiv preprint arXiv:2112.04882, 2021
Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis
MA Schulz, S Hetzer, F Eitel, S Asseyer, L Meyer-Arndt, T Schmitz-Hübsch, ...
Iscience 26 (9), 2023
Harnessing spatial homogeneity of neuroimaging data: patch individual filter layers for CNNs
F Eitel, JP Albrecht, M Weygandt, F Paul, K Ritter
arXiv preprint arXiv:2007.11899, 2020
Limitations of machine learning in psychiatry: Participation in the PAC 2018 depression challenge
F Eitel, S Stober, L Waller, L Dorfschmidt, H Walter, K Ritter
medRxiv, 19000562, 2019
Benchmark data to study the influence of pre-training on explanation performance in MR image classification
M Oliveira, R Wilming, B Clark, C Budding, F Eitel, K Ritter, S Haufe
arXiv preprint arXiv:2306.12150, 2023
Higher performance for women than men in MRI-based Alzheimer’s disease detection
M Klingenberg, D Stark, F Eitel, C Budding, M Habes, K Ritter, ...
Alzheimer's Research & Therapy 15 (1), 84, 2023
Explainable deep learning classifiers for disease detection based on structural brain MRI data
F Eitel
Humboldt-Universität zu Berlin, 2022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20