Asif Ekbal
Asif Ekbal
Department of Computer Science and Engineering, IIT Patna, India
Bestätigte E-Mail-Adresse bei iitp.ac.in
Titel
Zitiert von
Zitiert von
Jahr
The CHEMDNER corpus of chemicals and drugs and its annotation principles
M Krallinger, O Rabal, F Leitner, M Vazquez, D Salgado, Z Lu, R Leaman, ...
Journal of cheminformatics 7 (1), 1-17, 2015
1562015
Named entity recognition using support vector machine: A language independent approach
A Ekbal, S Bandyopadhyay
International Journal of Electrical, Computer, and Systems Engineering 4 (2 …, 2010
1192010
Bengali named entity recognition using support vector machine
A Ekbal, S Bandyopadhyay
Proceedings of the IJCNLP-08 Workshop on Named Entity Recognition for South …, 2008
1172008
Feature selection and ensemble construction: A two-step method for aspect based sentiment analysis
MS Akhtar, D Gupta, A Ekbal, P Bhattacharyya
Knowledge-Based Systems 125, 116-135, 2017
1052017
Combining multiple classifiers using vote based classifier ensemble technique for named entity recognition
S Saha, A Ekbal
Data & Knowledge Engineering 85, 15-39, 2013
992013
Language independent named entity recognition in indian languages
A Ekbal, R Haque, A Das, V Poka, S Bandyopadhyay
Proceedings of the IJCNLP-08 Workshop on Named Entity Recognition for South …, 2008
882008
A modified joint source-channel model for transliteration
A Ekbal, SK Naskar, S Bandyopadhyay
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, 191-198, 2006
812006
Bengali part of speech tagging using conditional random field
A Ekbal, R Haque, S Bandyopadhyay
Proceedings of the seventh International Symposium on Natural Language …, 2007
792007
A web-based Bengali news corpus for named entity recognition
A Ekbal, S Bandyopadhyay
Language Resources and Evaluation 42 (2), 173-182, 2008
782008
A conditional random field approach for named entity recognition in Bengali and Hindi
A Ekbal, S Bandyopadhyay
Linguistic Issues in Language Technology 2 (1), 1-44, 2009
692009
Part of speech tagging in bengali using support vector machine
A Ekbal, S Bandyopadhyay
2008 International Conference on Information Technology, 106-111, 2008
692008
A hybrid deep learning architecture for sentiment analysis
MS Akhtar, A Kumar, A Ekbal, P Bhattacharyya
Proceedings of COLING 2016, the 26th International Conference on …, 2016
632016
Named entity recognition in Bengali: A conditional random field approach
A Ekbal, R Haque, S Bandyopadhyay
Proceedings of the Third International Joint Conference on Natural Language …, 2008
612008
Weighted vote-based classifier ensemble for named entity recognition: a genetic algorithm-based approach
A Ekbal, S Saha
ACM Transactions on Asian Language Information Processing (TALIP) 10 (2), 1-37, 2011
592011
POS Tagging using HMM and Rule-based Chunking
A Ekbal, S Mondal, S Bandyopadhyay
The Proceedings of SPSAL 8 (1), 25-28, 2007
592007
Iit-tuda at semeval-2016 task 5: Beyond sentiment lexicon: Combining domain dependency and distributional semantics features for aspect based sentiment analysis
A Kumar, S Kohail, A Kumar, A Ekbal, C Biemann
Proceedings of the 10th international workshop on semantic evaluation …, 2016
582016
How intense are you? Predicting intensities of emotions and sentiments using stacked ensemble [application notes]
MS Akhtar, A Ekbal, E Cambria
IEEE Computational Intelligence Magazine 15 (1), 64-75, 2020
572020
Pso-asent: Feature selection using particle swarm optimization for aspect based sentiment analysis
DK Gupta, KS Reddy, A Ekbal
International conference on applications of natural language to information …, 2015
532015
IARM: Inter-aspect relation modeling with memory networks in aspect-based sentiment analysis
N Majumder, S Poria, A Gelbukh, MS Akhtar, E Cambria, A Ekbal
Proceedings of the 2018 conference on empirical methods in natural language …, 2018
502018
Assessing the challenge of fine-grained named entity recognition and classification
A Ekbal, E Sourjikova, A Frank, SP Ponzetto
proceedings of the 2010 Named Entities Workshop, 93-101, 2010
502010
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20