Follow
Alexander Ziller
Title
Cited by
Cited by
Year
End-to-end privacy preserving deep learning on multi-institutional medical imaging
G Kaissis*, A Ziller*, J Passerat-Palmbach, T Ryffel, D Usynin, A Trask, ...
Nature Machine Intelligence 3 (6), 473-484, 2021
3232021
Pysyft: A library for easy federated learning
A Ziller, A Trask, A Lopardo, B Szymkow, B Wagner, E Bluemke, ...
Federated Learning Systems: Towards Next-Generation AI, 111-139, 2021
1972021
Medical imaging deep learning with differential privacy
A Ziller, D Usynin, R Braren, M Makowski, D Rueckert, G Kaissis
Scientific Reports 11 (1), 13524, 2021
1412021
Adversarial interference and its mitigations in privacy-preserving collaborative machine learning
D Usynin, A Ziller, M Makowski, R Braren, D Rueckert, B Glocker, ...
Nature Machine Intelligence 3 (9), 749-758, 2021
482021
Differentially private training of residual networks with scale normalisation
H Klause, A Ziller, D Rueckert, K Hammernik, G Kaissis
arXiv preprint arXiv:2203.00324, 2022
222022
Preserving fairness and diagnostic accuracy in private large-scale AI models for medical imaging
S Tayebi Arasteh, A Ziller, C Kuhl, M Makowski, S Nebelung, R Braren, ...
Communications Medicine 4 (1), 46, 2024
21*2024
Differentially private federated deep learning for multi-site medical image segmentation
A Ziller, D Usynin, N Remerscheid, M Knolle, M Makowski, R Braren, ...
arXiv preprint arXiv:2107.02586, 2021
182021
Privacy-preserving medical image analysis
A Ziller, J Passerat-Palmbach, T Ryffel, D Usynin, A Trask, IDLC Junior, ...
arXiv preprint arXiv:2012.06354, 2020
112020
End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nat. Mach. Intell. 3
G Kaissis, A Ziller, J Passerat-Palmbach, T Ryffel, D Usynin, A Trask, ...
92021
Oktoberfest food dataset
A Ziller, J Hansjakob, V Rusinov, D Zügner, P Vogel, S Günnemann
arXiv preprint arXiv:1912.05007, 2019
92019
Smoothnets: Optimizing cnn architecture design for differentially private deep learning
NW Remerscheid, A Ziller, D Rueckert, G Kaissis
arXiv preprint arXiv:2205.04095, 2022
82022
Complex-valued deep learning with differential privacy
A Ziller, D Usynin, M Knolle, K Hammernik, D Rueckert, G Kaissis
arXiv preprint arXiv:2110.03478, 2021
72021
A unified interpretation of the gaussian mechanism for differential privacy through the sensitivity index
G Kaissis, M Knolle, F Jungmann, A Ziller, D Usynin, D Rueckert
arXiv preprint arXiv:2109.10528, 2021
72021
Bounding data reconstruction attacks with the hypothesis testing interpretation of differential privacy
G Kaissis, J Hayes, A Ziller, D Rueckert
arXiv preprint arXiv:2307.03928, 2023
52023
Sensitivity analysis in differentially private machine learning using hybrid automatic differentiation
A Ziller, D Usynin, M Knolle, K Prakash, A Trask, R Braren, M Makowski, ...
arXiv preprint arXiv:2107.04265, 2021
52021
Federated Learning Systems
A Ziller, A Trask, A Lopardo, B Szymkow, B Wagner, E Bluemke, ...
Cham: Springer, 111-139, 2021
52021
Artificial intelligence in medicine and privacy preservation
A Ziller, J Passerat-Palmbach, A Trask, R Braren, D Rueckert, G Kaissis
Artificial Intelligence in Medicine, 1-14, 2020
52020
An automatic differentiation system for the age of differential privacy
D Usynin, A Ziller, M Knolle, A Trask, K Prakash, D Rueckert, G Kaissis
arXiv preprint arXiv:2109.10573, 2021
42021
Prognostic value of deep learning-derived body composition in advanced pancreatic cancer—a retrospective multicenter study
J Keyl, A Bucher, F Jungmann, R Hosch, A Ziller, R Armbruster, ...
ESMO open 9 (1), 102219, 2024
32024
Partial sensitivity analysis in differential privacy
TT Mueller, A Ziller, D Usynin, M Knolle, F Jungmann, D Rueckert, ...
arXiv preprint arXiv:2109.10582, 2021
32021
The system can't perform the operation now. Try again later.
Articles 1–20