Folgen
Elena Mocanu
Elena Mocanu
Assistant Professor, University of Twente
Bestätigte E-Mail-Adresse bei utwente.nl
Titel
Zitiert von
Zitiert von
Jahr
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science
DC Mocanu, E Mocanu, P Stone, PH Nguyen, M Gibescu, A Liotta
Nature communications 9 (1), 1-12, 2017
6882017
Deep learning for estimating building energy consumption
E Mocanu, PH Nguyen, M Gibescu, WL Kling
Sustainable Energy, Grids and Networks 6, 91-99, 2016
6742016
On-line building energy optimization using deep reinforcement learning
E Mocanu, DC Mocanu, PH Nguyen, A Liotta, ME Webber, M Gibescu, ...
IEEE transactions on smart grid 10 (4), 3698-3708, 2018
6132018
Unsupervised energy prediction in a Smart Grid context using reinforcement cross-building transfer learning
E Mocanu, PH Nguyen, WL Kling, M Gibescu
Energy and Buildings 116, 646-655, 2016
1742016
Deep learning versus traditional machine learning methods for aggregated energy demand prediction
NG Paterakis, E Mocanu, M Gibescu, B Stappers, W van Alst
2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT …, 2017
1282017
A topological insight into restricted Boltzmann machines
DC Mocanu, E Mocanu, PH Nguyen, M Gibescu, A Liotta
Machine Learning 104 (2), 243-270, 2016
1142016
Enabling cooperative behavior for building demand response based on extended joint action learning
LA Hurtado, E Mocanu, PH Nguyen, M Gibescu, RIG Kamphuis
IEEE Transactions on Industrial Informatics 14 (1), 127-136, 2017
792017
Big data application in power systems
R Arghandeh, Y Zhou
Elsevier, 2017
692017
Comparison of machine learning methods for estimating energy consumption in buildings
E Mocanu, PH Nguyen, M Gibescu, WL Kling
2014 international conference on probabilistic methods applied to power …, 2014
652014
Big IoT data mining for real-time energy disaggregation in buildings
DC Mocanu, E Mocanu, PH Nguyen, M Gibescu, A Liotta
2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC …, 2016
612016
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity
S Liu, T Chen, Z Atashgahi, X Chen, G Sokar, E Mocanu, M Pechenizkiy, ...
International Conference on Learning Representations ICLR 2022, arXiv …, 2022
542022
Dynamic Sparse Training for Deep Reinforcement Learning
G Sokar, E Mocanu, DC Mocanu, M Pechenizkiy, P Stone
IJCAI-ECAI 2022, 31st International Joint Conference on Artificial …, 2022
392022
Demand forecasting at low aggregation levels using factored conditional restricted Boltzmann machine
E Mocanu, PH Nguyen, M Gibescu, EM Larsen, P Pinson
2016 Power Systems Computation Conference (PSCC), 1-7, 2016
382016
Quick and robust feature selection: the strength of energy-efficient sparse training for autoencoders
Z Atashgahi, G Sokar, T van der Lee, E Mocanu, DC Mocanu, R Veldhuis, ...
Machine Learning Journal (ECML-PKDD 2022 journal track), 2022
352022
Energy disaggregation for real-time building flexibility detection
E Mocanu, PH Nguyen, M Gibescu
2016 IEEE Power and Energy Society General Meeting (PESGM), 1-5, 2016
342016
Deep learning for power system data analysis
E Mocanu, HP Nguyen, M Gibescu
Book chapter in Big data application in power systems, 2017
332017
Forecasting
E Mocanu, DC Mocanu, NG Paterakis, M Gibescu
Local Electricity Markets, 243-257, 2021
30*2021
Sparse Training Theory for Scalable and Efficient Agents
DC Mocanu, E Mocanu, T Pinto, S Curci, PH Nguyen, M Gibescu, D Ernst, ...
20th International Conference on Autonomous Agents and Multiagent Systems …, 2021
282021
Comfort-constrained demand flexibility management for building aggregations using a decentralized approach
LA Hurtado, E Mocanu, PH Nguyen, M Gibescu, WL Kling
2015 International Conference on Smart Cities and Green ICT Systems …, 2015
242015
Dynamic Sparse Network for Time Series Classification: Learning What to" see''
Q Xiao, B Wu, Y Zhang, S Liu, M Pechenizkiy, E Mocanu, DC Mocanu
NeurIPS 2022, arXiv:2212.09840, 2022
232022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20