Folgen
Chaowei Xiao
Chaowei Xiao
Assistant professor at ASU
Bestätigte E-Mail-Adresse bei umich.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Robust physical-world attacks on deep learning visual classification
K Eykholt, I Evtimov, E Fernandes, B Li, A Rahmati, C Xiao, A Prakash, ...
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017
2396*2017
Tagoram: Real-time tracking of mobile RFID tags to high precision using COTS devices
L Yang, Y Chen, XY Li, C Xiao, M Li, Y Liu
Proceedings of the 20th annual international conference on Mobile computing …, 2014
7532014
Generating Adversarial Examples with Adversarial Networks
C Xiao, B Li, JY Zhu, W He, M Liu, D Song
International Joint Conferences on Artificial Intelligence Organization …, 2018
7222018
Spatially Transformed Adversarial Examples
C Xiao, JY Zhu, B Li, W He, M Liu, D Song
International Conference on Learning Representations, 2018
4932018
Adversarial sensor attack on lidar-based perception in autonomous driving
Y Cao, C Xiao, B Cyr, Y Zhou, W Park, S Rampazzi, QA Chen, K Fu, ...
Proceedings of the 2019 ACM SIGSAC conference on computer and communications …, 2019
3702019
Towards stable and efficient training of verifiably robust neural networks
H Zhang, H Chen, C Xiao, S Gowal, R Stanforth, B Li, D Boning, CJ Hsieh
ICLR, 2020
2522020
Robust deep reinforcement learning against adversarial perturbations on state observations
H Zhang, H Chen, C Xiao, B Li, M Liu, D Boning, CJ Hsieh
Advances in Neural Information Processing Systems 33, 21024-21037, 2020
1492020
Automatic radio map adaptation for indoor localization using smartphones
C Wu, Z Yang, C Xiao
IEEE Transactions on Mobile Computing 17 (3), 517-528, 2017
1302017
Semanticadv: Generating adversarial examples via attribute-conditioned image editing
H Qiu, C Xiao, L Yang, X Yan, H Lee, B Li
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020
1262020
Adversarial objects against lidar-based autonomous driving systems
Y Cao, C Xiao, D Yang, J Fang, R Yang, M Liu, B Li
arXiv preprint arXiv:1907.05418, 2019
1212019
Meshadv: Adversarial meshes for visual recognition
C Xiao, D Yang, B Li, J Deng, M Liu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
109*2019
Characterizing adversarial examples based on spatial consistency information for semantic segmentation
C Xiao, R Deng, B Li, F Yu, M Liu, D Song
Proceedings of the European Conference on Computer Vision (ECCV), 217-234, 2018
942018
Invisible for both camera and lidar: Security of multi-sensor fusion based perception in autonomous driving under physical-world attacks
Y Cao, N Wang, C Xiao, D Yang, J Fang, R Yang, QA Chen, M Liu, B Li
2021 IEEE Symposium on Security and Privacy (SP), 176-194, 2021
872021
Data poisoning attack against unsupervised node embedding methods
M Sun, J Tang, H Li, B Li, C Xiao, Y Chen, D Song
arXiv preprint arXiv:1810.12881, 2018
712018
Static power of mobile devices: Self-updating radio maps for wireless indoor localization
C Wu, Z Yang, C Xiao, C Yang, Y Liu, M Liu
2015 IEEE Conference on Computer Communications (INFOCOM), 2497-2505, 2015
702015
Diffusion models for adversarial purification
W Nie, B Guo, Y Huang, C Xiao, A Vahdat, A Anandkumar
International Conference on Machine Learning, 2022
672022
Understanding the robustness in vision transformers
D Zhou, Z Yu, E Xie, C Xiao, A Anandkumar, J Feng, JM Alvarez
International Conference on Machine Learning, 27378-27394, 2022
662022
Improving Robustness of ML Classifiers against Realizable Evasion Attacks Using Conserved Features.
L Tong, B Li, C Hajaj, C Xiao, N Zhang, Y Vorobeychik
USENIX Security Symposium, 285-302, 2019
662019
Long-short transformer: Efficient transformers for language and vision
C Zhu, W Ping, C Xiao, M Shoeybi, T Goldstein, A Anandkumar, ...
Advances in Neural Information Processing Systems 34, 17723-17736, 2021
622021
Characterizing attacks on deep reinforcement learning
X Pan, C Xiao, W He, S Yang, J Peng, M Sun, J Yi, Z Yang, M Liu, B Li, ...
AAMAS, 2019
552019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20