Folgen
Ioannis (Yannis) Mitliagkas
Ioannis (Yannis) Mitliagkas
Associate Professor at Mila, University of Montréal
Bestätigte E-Mail-Adresse bei iro.umontreal.ca - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Learning Representations and Generative Models for 3D Point Clouds
P Achlioptas, O Diamanti, I Mitliagkas, L Guibas
International Conference on Machine Learning, 2018
9122018
Manifold mixup: Better representations by interpolating hidden states
V Verma, A Lamb, C Beckham, A Najafi, I Mitliagkas, A Courville, ...
arXiv preprint arXiv:1806.05236, 2018
7232018
Manifold mixup: Better representations by interpolating hidden states
V Verma, A Lamb, C Beckham, A Najafi, I Mitliagkas, A Courville, ...
arXiv preprint arXiv:1806.05236, 2018
7232018
Memory limited, streaming PCA
I Mitliagkas, C Caramanis, P Jain
Advances in neural information processing systems 26, 2013
1692013
Negative momentum for improved game dynamics
G Gidel, RA Hemmat, M Pezeshki, G Huang, R Lepriol, S Lacoste-Julien, ...
Artificial Intelligence and Statistics, 2019
1532019
Asynchrony begets momentum, with an application to deep learning
I Mitliagkas, C Zhang, S Hadjis, C Ré
2016 54th Annual Allerton Conference on Communication, Control, and …, 2016
1442016
A modern take on the bias-variance tradeoff in neural networks
B Neal, S Mittal, A Baratin, V Tantia, M Scicluna, S Lacoste-Julien, ...
arXiv preprint arXiv:1810.08591, 2018
1372018
Yellowfin and the art of momentum tuning
J Zhang, I Mitliagkas
SysML, 2019
1042019
Deep learning at 15pf: supervised and semi-supervised classification for scientific data
T Kurth, J Zhang, N Satish, E Racah, I Mitliagkas, MMA Patwary, T Malas, ...
Proceedings of the International Conference for High Performance Computing …, 2017
972017
Parallel SGD: When does averaging help?
J Zhang, C De Sa, I Mitliagkas, C Ré
arXiv preprint arXiv:1606.07365, 2016
872016
Representation learning and adversarial generation of 3D point clouds
P Achlioptas, O Diamanti, I Mitliagkas, L Guibas
arXiv preprint arXiv:1707.02392, 2017
842017
Generalizing to unseen domains via distribution matching
I Albuquerque, J Monteiro, M Darvishi, TH Falk, I Mitliagkas
arXiv preprint arXiv:1911.00804, 2019
83*2019
Joint power and admission control for ad-hoc and cognitive underlay networks: Convex approximation and distributed implementation
I Mitliagkas, ND Sidiropoulos, A Swami
IEEE Transactions on Wireless Communications 10 (12), 4110-4121, 2011
832011
Manifold mixup: Learning better representations by interpolating hidden states
V Verma, A Lamb, C Beckham, A Najafi, A Courville, I Mitliagkas, ...
76*2018
A tight and unified analysis of gradient-based methods for a whole spectrum of differentiable games
W Azizian, I Mitliagkas, S Lacoste-Julien, G Gidel
International conference on artificial intelligence and statistics, 2863-2873, 2020
742020
Omnivore: An optimizer for multi-device deep learning on cpus and gpus
S Hadjis, C Zhang, I Mitliagkas, D Iter, C Ré
arXiv preprint arXiv:1606.04487, 2016
672016
Accelerated stochastic power iteration
P Xu, B He, C De Sa, I Mitliagkas, C Re
International Conference on Artificial Intelligence and Statistics, 58-67, 2018
652018
Invariance principle meets information bottleneck for out-of-distribution generalization
K Ahuja, E Caballero, D Zhang, JC Gagnon-Audet, Y Bengio, I Mitliagkas, ...
Advances in Neural Information Processing Systems 34, 3438-3450, 2021
612021
Gotta go fast when generating data with score-based models
A Jolicoeur-Martineau, K Li, R Piché-Taillefer, T Kachman, I Mitliagkas
arXiv preprint arXiv:2105.14080, 2021
592021
Multi-objective training of Generative Adversarial Networks with multiple discriminators
I Albuquerque, J Monteiro, T Doan, B Considine, T Falk, I Mitliagkas
International Conference on Machine Learning, 2019
492019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20