Théo Galy-Fajou
Théo Galy-Fajou
Bestätigte E-Mail-Adresse bei tu-berlin.de - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Bayesian Nonlinear Support Vector Machines for Big Data
F Wenzel, T Galy-Fajou, M Deutsch, M Kloft
ECML 2017, 2017
232017
Efficient Gaussian process classification using Pòlya-Gamma data augmentation
F Wenzel, T Galy-Fajou, C Donner, M Kloft, M Opper
AAAI 19, 2018
172018
Multi-class gaussian process classification made conjugate: Efficient inference via data augmentation
T Galy-Fajou, F Wenzel, C Donner, M Opper
UAI 2019, 2019
72019
Scalable multi-class Gaussian process classification via data augmentation
T Galy-Fajou, F Wenzel, C Donner, M Opper
Proc. NIPS Workshop Approx. Inference, 1-12, 2018
12018
Scalable logit gaussian process classification
F Wenzel, T Galy-Fajou, C Donner, M Kloft, M Opper
Advances in Approximate Bayesian Inference, NIPS Workshop, 2017
12017
Automated Augmented Conjugate Inference for Non-conjugate Gaussian Process Models
T Galy-Fajou, F Wenzel, M Opper
International Conference on Artificial Intelligence and Statistics, 3025-3035, 2020
2020
Evidence Estimation by Kullback-Leibler Integration for Flow-Based Methods
N Zaki, T Galy-Fajou, M Opper
Gaussian Density Parametrization Flow: Particle and Stochastic Approaches
T Galy-Fajou, V Perrone, M Opper
Fast Inference in Non-Conjugate Gaussian Process Models via Data Augmentation
F Wenzel, T Galy-Fajou, C Donner, M Kloft, M Opper
Scalable Approximate Inference for the Bayesian Nonlinear Support Vector Machine
F Wenzel, M Deutsch, T Galy-Fajou, M Kloft
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–10