Folgen
Maximilian Bäumler
Maximilian Bäumler
Lehrstuhl Kraftfahrzeugtechnik, TU Dresden
Bestätigte E-Mail-Adresse bei tu-dresden.de - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Scenario Based Testing of Automated Driving Systems: A Literature Survey
D Nalic, T Mihalj, M Bäumler, M Lehmann, A Eichberger, S Bernsteiner
Proc. FISITA Web Congr., 30, 2020
962020
Predicting the impact on road safety of an intersection AEB at urban intersections. Using a novel virtual test field for the assessment of conflict prevention between cyclists …
C Siebke, M Bäumler, K Blenz, M Lehmann, M Ringhand, M Mai, ...
Transportation Research Interdisciplinary Perspectives 17, 100728, 2023
162023
Approaching intersections: Gaze behavior of drivers depending on traffic, intersection type, driving maneuver, and secondary task involvement
M Ringhand, C Siebke, M Bäumler, T Petzoldt
Transportation Research Part F: Traffic Psychology and Behaviour 91, 116-135, 2022
162022
Use Information You Have Never Observed Together: Data Fusion as a Major Step Towards Realistic Test Scenarios
M Bäumler, L Dziuba-Kaiser, Z Yin, M Lehmann, G Prokop
2020 IEEE 23rd International Conference on Intelligent Transportation …, 2020
132020
Use of a criticality metric for assessment of critical traffic situations as part of SePIA
M Lehmann, M Bäumler, G Prokop, D Hamelow
19. Internationales Stuttgarter Symposium, 1154-1167, 2019
122019
Validating automated driving systems by using scenario-based testing: The Fuse4Rep process model for scenario generation as part of the Dresden Method
M Bäumler, G Prokop
ZVS - Zeitschrift für Verkehrssicherheit 68 (3), 226-230, 2022
72022
Evaluation von Machine-Learning-Modellen und Konzeptionierung eines Modell-Ensembles für die Vorhersage von Unfalldaten
G Siedel
72021
Fusion von Unfallszenarien für die Repräsentativitätsüberprüfung eines Testszenarienkataloges zur Absicherung automatisierter Fahrfunktionen
L Dziuba-Kaiser
72020
Test Scenario Fusion: How to Fuse Scenarios from Accident and Traffic Observation Data
M Bäumler, G Prokop
IEEE Access 12, 16354-16374, 2024
62024
Report on design of modules for the stochastic traffic simulation
C Siebke, M Bäumler, M Ringhand, IM Mai, F Elrod, IG Prokop
62021
Generating representative test scenarios: The fuse for representativity (Fuse4Rep) process model for collecting and analysing traffic observation data
M Bäumler, M Lehmann, G Prokop
27th ESV conference, 23-0122, 2023
52023
Report on integration of the stochastic traffic simulation
C Siebke, M Bäumler, M Ringhand, IM Mai, F Elrod, IG Prokop
52021
Report on validation of the stochastic traffic simulation (Part B)
M Bäumler, M Ringhand, C Siebke, IM Mai, F Elrod, IG Prokop
52021
Report on layout of the traffic simulation and trial design of the evaluation
C Siebke, M Bäumler, M Ringhand, M Mai, MN Ramadan, G Prokop
Technische Univ. Dresden, Dresden, Germany, Tech. Rep. D 2, 2021
42021
Report on validation of the stochastic traffic simulation (Part A)
M Ringhand, M Bäumler, C Siebke, IM Mai, F Elrod
42021
Generating ADS Test Scenarios from Police Accident Data: How to Predict the Type of Road Traffic Accident Accurately
M Bäumler, G Prokop
Available at SSRN 4295798, 0
4
Predicting the type of road traffic accident for test scenario generation
M Bäumler, G Prokop
IEEE Access, 2024
32024
Die Dresdner Methode
M Mai, M Bäumler, M Lehmann, C Siebke, K Blenz, G Prokop, ...
VDI-Tagung Fahrzeugsicherheit 13, 2022
32022
Verbesserung und Evaluation eines Modell-Ensembles für die Vorhersage von Unfalldaten anhand synthetischer Daten
H Chen
32021
Categorizing data-driven methods for test scenario generation to assess automated driving systems
M Bäumler, F Linke, G Prokop
IEEE Access, 2024
12024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20