Self-adjointness of two-dimensional Dirac operators on domains RD Benguria, S Fournais, E Stockmeyer, H Van Den Bosch Annales Henri Poincaré 18, 1371-1383, 2017 | 60 | 2017 |

The ground state energy of relativistic one-electron atoms according to Jansen and Hess R Brummelhuis, H Siedentop, E Stockmeyer Documenta Mathematica 7, 167-182, 2002 | 43 | 2002 |

Spectral gaps of Dirac operators describing graphene quantum dots RD Benguria, S Fournais, E Stockmeyer, H Van Den Bosch Mathematical Physics, Analysis and Geometry 20, 1-12, 2017 | 37 | 2017 |

Hartree–Fock theory for pseudorelativistic atoms A Dall’Acqua, TØ Sørensen, E Stockmeyer Annales Henri Poincaré 9 (4), 711-742, 2008 | 36 | 2008 |

Infinite mass boundary conditions for Dirac operators E Stockmeyer, S Vugalter Journal of Spectral Theory 9 (2), 569-600, 2018 | 35 | 2018 |

Existence of ground states of hydrogen-like atoms in relativistic QED I: the semi-relativistic Pauli–Fierz operator M Könenberg, O Matte, E Stockmeyer Reviews in Mathematical Physics 23 (04), 375-407, 2011 | 29 | 2011 |

Resolvent convergence to Dirac operators on planar domains JM Barbaroux, H Cornean, L Le Treust, E Stockmeyer Annales Henri Poincaré 20 (6), 1877-1891, 2019 | 22 | 2019 |

Multiparticle equations for interacting Dirac fermions in magnetically confined graphene quantum dots R Egger, A De Martino, H Siedentop, E Stockmeyer Journal of Physics A: Mathematical and Theoretical 43 (21), 215202, 2010 | 21 | 2010 |

The Douglas-Kroll-Hess method: Convergence and block-diagonalization of Dirac operators H Siedentop, E Stockmeyer Annales Henri Poincaré 7, 45-58, 2006 | 21 | 2006 |

Real analyticity away from the nucleus of pseudorelativistic Hartree–Fock orbitals A Dall’Acqua, S Fournais, T Østergaard Sørensen, E Stockmeyer Analysis & PDE 5 (3), 657-691, 2012 | 20 | 2012 |

Exponential localization of hydrogen-like atoms in relativistic quantum electrodynamics O Matte, E Stockmeyer Communications in Mathematical Physics 295, 551-583, 2010 | 18 | 2010 |

Existence of ground states of hydrogen-like atoms in relativistic quantum electrodynamics. II. The no-pair operator M Könenberg, O Matte, E Stockmeyer Journal of mathematical physics 52 (12), 123501, 2011 | 15 | 2011 |

Dirac Operators Coupled to the Quantized Radiation Field: Essential Self-adjointness à la Chernoff. E Stockmeyer, H Zenk Letters in Mathematical Physics 83 (1), 2008 | 15 | 2008 |

An analytic Douglas–Kroll–Heß method H Siedentop, E Stockmeyer Physics Letters A 341 (5-6), 473-478, 2005 | 15 | 2005 |

Operator representation for Matsubara sums O Espinosa, E Stockmeyer Physical Review D 69 (6), 065004, 2004 | 15 | 2004 |

Spectral theory of no-pair Hamiltonians O Matte, E Stockmeyer Reviews in Mathematical Physics 22 (01), 1-53, 2010 | 13 | 2010 |

On the semiclassical spectrum of the Dirichlet–Pauli operator JM Barbaroux, L Le Treust, N Raymond, E Stockmeyer Journal of the European Mathematical Society 23 (10), 3279-3321, 2021 | 12 | 2021 |

On the eigenfunctions of no-pair operators in classical magnetic fields O Matte, E Stockmeyer Integral Equations and Operator Theory 65 (2), 255, 2009 | 12 | 2009 |

Confinement–deconfinement transitions for two-dimensional Dirac particles J Mehringer, E Stockmeyer Journal of Functional Analysis 266 (4), 2225-2250, 2014 | 8 | 2014 |

On the non-relativistic limit of a model in quantum electrodynamics E Stockmeyer arXiv preprint arXiv:0905.1006, 2009 | 7 | 2009 |