Philippe Wenk
Philippe Wenk
ETH Zürich, MPI Tübingen
Verified email at
Cited by
Cited by
Fast Gaussian process based gradient matching for parameter identification in systems of nonlinear ODEs
P Wenk, A Gotovos, S Bauer, NS Gorbach, A Krause, JM Buhmann
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
Odin: Ode-informed regression for parameter and state inference in time-continuous dynamical systems
P Wenk, G Abbati, MA Osborne, B Schölkopf, A Krause, S Bauer
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 6364-6371, 2020
Ares and mars adversarial and mmd-minimizing regression for sdes
G Abbati, P Wenk, MA Osborne, A Krause, B Schölkopf, S Bauer
International Conference on Machine Learning, 1-10, 2019
A real-robot dataset for assessing transferability of learned dynamics models
D Agudelo-Espana, A Zadaianchuk, P Wenk, A Garg, J Akpo, ...
2020 IEEE International Conference on Robotics and Automation (ICRA), 8151-8157, 2020
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for Gaussian Process Regression with Derivatives
E Angelis, P Wenk, B Schölkopf, S Bauer, A Krause
arXiv preprint arXiv:2003.02658, 2020
Distributional Gradient Matching for Learning Uncertain Neural Dynamics Models
L Treven, P Wenk, F Dörfler, A Krause
arXiv preprint arXiv:2106.11609, 2021
Stabilizing Flight
S Gyger, A Steger, P Wenk
Deep Dynamics Learning For Thermoacoustics
P Wenk
The system can't perform the operation now. Try again later.
Articles 1–8