Philippe Wenk
Philippe Wenk
ETH Zürich, MPI Tübingen
Verified email at ethz.ch
Title
Cited by
Cited by
Year
Fast Gaussian process based gradient matching for parameter identification in systems of nonlinear ODEs
P Wenk, A Gotovos, S Bauer, NS Gorbach, A Krause, JM Buhmann
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
232019
Odin: Ode-informed regression for parameter and state inference in time-continuous dynamical systems
P Wenk, G Abbati, MA Osborne, B Schölkopf, A Krause, S Bauer
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 6364-6371, 2020
182020
Ares and mars adversarial and mmd-minimizing regression for sdes
G Abbati, P Wenk, MA Osborne, A Krause, B Schölkopf, S Bauer
International Conference on Machine Learning, 1-10, 2019
122019
A real-robot dataset for assessing transferability of learned dynamics models
D Agudelo-Espana, A Zadaianchuk, P Wenk, A Garg, J Akpo, ...
2020 IEEE International Conference on Robotics and Automation (ICRA), 8151-8157, 2020
32020
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for Gaussian Process Regression with Derivatives
E Angelis, P Wenk, B Schölkopf, S Bauer, A Krause
arXiv preprint arXiv:2003.02658, 2020
32020
Distributional Gradient Matching for Learning Uncertain Neural Dynamics Models
L Treven, P Wenk, F Dörfler, A Krause
arXiv preprint arXiv:2106.11609, 2021
2021
Stabilizing Flight
S Gyger, A Steger, P Wenk
2013
Deep Dynamics Learning For Thermoacoustics
P Wenk
The system can't perform the operation now. Try again later.
Articles 1–8