Folgen
Sheraz Ahmed
Sheraz Ahmed
Bestätigte E-Mail-Adresse bei dfki.de
Titel
Zitiert von
Zitiert von
Jahr
DeepAnT: A deep learning approach for unsupervised anomaly detection in time series
M Munir, SA Siddiqui, A Dengel, S Ahmed
Ieee Access 7, 1991-2005, 2018
6432018
Deepdesrt: Deep learning for detection and structure recognition of tables in document images
S Schreiber, S Agne, I Wolf, A Dengel, S Ahmed
2017 14th IAPR international conference on document analysis and recognition …, 2017
4272017
Tac-gan-text conditioned auxiliary classifier generative adversarial network
A Dash, JCB Gamboa, S Ahmed, M Liwicki, MZ Afzal
arXiv preprint arXiv:1703.06412, 2017
1992017
LIVECell—A large-scale dataset for label-free live cell segmentation
C Edlund, TR Jackson, N Khalid, N Bevan, T Dale, A Dengel, S Ahmed, ...
Nature methods 18 (9), 1038-1045, 2021
1982021
Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning
MN Bajwa, MI Malik, SA Siddiqui, A Dengel, F Shafait, W Neumeier, ...
BMC medical informatics and decision making 19, 1-16, 2019
1962019
Improved automatic analysis of architectural floor plans
S Ahmed, M Liwicki, M Weber, A Dengel
2011 International conference on document analysis and recognition, 864-869, 2011
1692011
Statistical segmentation and structural recognition for floor plan interpretation: Notation invariant structural element recognition
LP De Las Heras, S Ahmed, M Liwicki, E Valveny, G Sánchez
International Journal on Document Analysis and Recognition (IJDAR) 17 (3 …, 2014
1492014
Automatic room detection and room labeling from architectural floor plans
S Ahmed, M Liwicki, M Weber, A Dengel
2012 10th IAPR international workshop on document analysis systems, 339-343, 2012
1492012
DeepCFD: Efficient steady-state laminar flow approximation with deep convolutional neural networks
MD Ribeiro, A Rehman, S Ahmed, A Dengel
arXiv preprint arXiv:2004.08826, 2020
1302020
Decnt: Deep deformable cnn for table detection
SA Siddiqui, MI Malik, S Agne, A Dengel, S Ahmed
IEEE access 6, 74151-74161, 2018
1252018
Computer-aided diagnosis of skin diseases using deep neural networks
MN Bajwa, K Muta, MI Malik, SA Siddiqui, SA Braun, B Homey, A Dengel, ...
Applied Sciences 10 (7), 2488, 2020
1202020
Cutting the error by half: Investigation of very deep cnn and advanced training strategies for document image classification
MZ Afzal, A Kölsch, S Ahmed, M Liwicki
2017 14th IAPR international conference on document analysis and recognition …, 2017
1142017
FuseAD: Unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning models
M Munir, SA Siddiqui, MA Chattha, A Dengel, S Ahmed
Sensors 19 (11), 2451, 2019
1072019
Tsviz: Demystification of deep learning models for time-series analysis
SA Siddiqui, D Mercier, M Munir, A Dengel, S Ahmed
IEEE Access 7, 67027-67040, 2019
1072019
Probabilistic forecasting of sensory data with generative adversarial networks–forgan
A Koochali, P Schichtel, A Dengel, S Ahmed
IEEE Access 7, 63868-63880, 2019
1062019
Automatic analysis and sketch-based retrieval of architectural floor plans
S Ahmed, M Weber, M Liwicki, C Langenhan, A Dengel, F Petzold
Pattern Recognition Letters 35, 91-100, 2014
972014
Deeptabstr: Deep learning based table structure recognition
SA Siddiqui, IA Fateh, STR Rizvi, A Dengel, S Ahmed
2019 international conference on document analysis and recognition (ICDAR …, 2019
902019
Judging a book by its cover
BK Iwana, STR Rizvi, S Ahmed, A Dengel, S Uchida
arXiv preprint arXiv:1610.09204, 2016
822016
G1020: A benchmark retinal fundus image dataset for computer-aided glaucoma detection
MN Bajwa, GAP Singh, W Neumeier, MI Malik, A Dengel, S Ahmed
2020 International Joint Conference on Neural Networks (IJCNN), 1-7, 2020
792020
On interpretability of deep learning based skin lesion classifiers using concept activation vectors
A Lucieri, MN Bajwa, SA Braun, MI Malik, A Dengel, S Ahmed
2020 international joint conference on neural networks (IJCNN), 1-10, 2020
782020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20