Efficient decentralized deep learning by dynamic model averaging M Kamp, L Adilova, J Sicking, F Hüger, P Schlicht, T Wirtz, S Wrobel Machine Learning and Knowledge Discovery in Databases: European Conference …, 2019 | 119 | 2019 |
Pulse shape dependence in the dynamically assisted Sauter-Schwinger effect MF Linder, C Schneider, J Sicking, N Szpak, R Schützhold Physical Review D 92 (8), 085009, 2015 | 68 | 2015 |
Inspect, understand, overcome: A survey of practical methods for ai safety S Houben, S Abrecht, M Akila, A Bär, F Brockherde, P Feifel, ... Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty …, 2022 | 35 | 2022 |
Trustworthy use of artificial intelligence-priorities from a philosophical, ethical, legal, and technological viewpoint as a basis for certification of artificial intelligence A Cremers, A Englander, M Gabriel, D Hecker, M Mock, M Poretschkin, ... Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS), 2019 | 9 | 2019 |
Concurrent credit portfolio losses J Sicking, T Guhr, R Schäfer Plos one 13 (2), e0190263, 2018 | 9 | 2018 |
Leitfaden zur Gestaltung vertrauenswürdiger Künstlicher Intelligenz M Poretschkin, A Schmitz, M Akila, L Adilova, D Becker, AB Cremers, ... KI-Prüfkatalog. Sankt Augustin: Fraunhofer-Institut für Intelligente Analyse …, 2021 | 7 | 2021 |
Characteristics of Monte Carlo dropout in wide neural networks J Sicking, M Akila, T Wirtz, S Houben, A Fischer arXiv preprint arXiv:2007.05434, 2020 | 6 | 2020 |
Vertrauenswürdiger Einsatz von Künstlicher Intelligenz. Handlungsfelder aus philosophischer, ethischer, rechtlicher und technologischer Sicht als Grundlage für eine … AB Cremers, A Englander, M Gabriel, D Hecker, M Mock, M Poretschkin, ... Fraunhofer-Institut für intelligente Analyse-und Informationssysteme (IAIS …, 2019 | 6 | 2019 |
A novel regression loss for non-parametric uncertainty optimization J Sicking, M Akila, M Pintz, T Wirtz, A Fischer, S Wrobel arXiv preprint arXiv:2101.02726, 2021 | 5 | 2021 |
Vertrauenswürdiger Einsatz von Künstlicher Intelligenz AB Cremers, A Englander, M Gabriel, D Hecker, M Mock, M Poretschkin, ... Fraunhofer IAIS, 2019 | 4 | 2019 |
Leitfaden zur Gestaltung vertrauenswürdiger Künstlicher Intelligenz (KI-Prüfkatalog) M Poretschkin, A Schmitz, M Akila, L Adilova, D Becker, AB Cremers, ... Fraunhofer IAIS, 2021 | 3 | 2021 |
Inspect, understand, overcome: A survey of practical methods for ai safety S Rüping, E Schulz, J Sicking, T Wirtz, M Akila, SS Gannamaneni, M Mock, ... Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty …, 2022 | 2 | 2022 |
Trustworthy Use of Artificial Intelligence AB Cremers, A Englander, M Gabriel, D Hecker, M Mock, M Poretschkin, ... | 2 | 2019 |
A Survey on Uncertainty Toolkits for Deep Learning M Pintz, J Sicking, M Poretschkin, M Akila arXiv preprint arXiv:2205.01040, 2022 | 1 | 2022 |
Approaching neural network uncertainty realism J Sicking, A Kister, M Fahrland, S Eickeler, F Hüger, S Rüping, P Schlicht, ... arXiv preprint arXiv:2101.02974, 2021 | 1 | 2021 |
DenseHMM: Learning Hidden Markov Models by Learning Dense Representations J Sicking, M Pintz, M Akila, T Wirtz arXiv preprint arXiv:2012.09783, 2020 | 1 | 2020 |
On Modeling and Assessing Uncertainty Estimates in Neural Learning Systems J Sicking Universitäts-und Landesbibliothek Bonn, 2023 | | 2023 |
Wasserstein dropout J Sicking, M Akila, M Pintz, T Wirtz, S Wrobel, A Fischer Machine Learning, 1-44, 2022 | | 2022 |
Tailored Uncertainty Estimation for Deep Learning Systems J Sicking, M Akila, JD Schneider, F Hüger, P Schlicht, T Wirtz, S Wrobel arXiv preprint arXiv:2204.13963, 2022 | | 2022 |
Patch Shortcuts: Interpretable Proxy Models Efficiently Find Black-Box Vulnerabilities J Rosenzweig, J Sicking, S Houben, M Mock, M Akila Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021 | | 2021 |