Mohammad Khorrami
Zitiert von
Zitiert von
Mechanical properties of graphene oxide: A molecular dynamics study
AR Khoei, MS Khorrami
Fullerenes, Nanotubes and Carbon Nanostructures 24 (9), 594-603, 2016
Development and comparison of spectral algorithms for numerical modeling of the quasi-static mechanical behavior of inhomogeneous materials
M Khorrami, JR Mianroodi, P Shanthraj, B Svendsen
arXiv preprint arXiv:2009.03762, 2020
An artificial neural network for surrogate modeling of stress fields in viscoplastic polycrystalline materials
MS Khorrami, JR Mianroodi, NH Siboni, P Goyal, B Svendsen, P Benner, ...
npj Computational Materials 9 (1), 37, 2023
Comparison of two artificial neural networks trained for the surrogate modeling of stress in materially heterogeneous elastoplastic solids
S Kapoor, JR Mianroodi, M Khorrami, NS Siboni, B Svendsen
arXiv preprint arXiv:2210.16994, 2022
Finite-deformation phase-field microelasticity with application to dislocation core and reaction modeling in fcc crystals
MS Khorrami, JR Mianroodi, B Svendsen
Journal of the Mechanics and Physics of Solids 164, 104897, 2022
On the higher-order pseudo-continuum characterization of discrete kinematic results from experimental measurement or discrete simulation
M Khorrami, JR Mianroodi, B Svendsen
arXiv preprint arXiv:2112.07418, 2021
Theoretical and algorithmic development of phase-field-based continuum models for microscopic dislocation processes in single crystals and comparison with atomistics
MS Khorrami
Surrogate modeling of stress fields in periodic polycrystalline microstructures using U-Net and Fourier neural operators
S Kapoor, J Mianroodi, B Svendsen, M Khorrami, NH Siboni
NeurIPS 2022 AI for Science: Progress and Promises, 0
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–8