关注
Xiangyi Chen
Xiangyi Chen
Pinterest
在 umn.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Learning to optimize: Training deep neural networks for interference management
H Sun, X Chen, Q Shi, M Hong, X Fu, ND Sidiropoulos
IEEE Transactions on Signal Processing 66 (20), 5438-5453, 2018
1023*2018
On the convergence of a class of adam-type algorithms for non-convex optimization
X Chen, S Liu, R Sun, M Hong
International Conference on Learning Representations, 2018
3252018
A deep learning method for online capacity estimation of lithium-ion batteries
S Shen, M Sadoughi, X Chen, M Hong, C Hu
Journal of Energy Storage 25, 100817, 2019
2972019
Understanding Gradient Clipping in Private SGD: A Geometric Perspective
X Chen, ZS Wu, M Hong
Advances in Neural Information Processing Systems 33, 2020
1752020
Zo-adamm: Zeroth-order adaptive momentum method for black-box optimization
X Chen, S Liu, K Xu, X Li, X Lin, M Hong, D Cox
Advances in Neural Information Processing Systems 32, 2019
982019
Min-Max Optimization without Gradients: Convergence and Applications to Black-Box Evasion and Poisoning Attacks
S Liu, S Lu, X Chen, Y Feng, K Xu, A Al-Dujaili, M Hong, UM O’Reilly
International Conference on Machine Learning, 6282-6293, 2020
86*2020
Distributed Training with Heterogeneous Data: Bridging Median-and Mean-Based Algorithms
X Chen, T Chen, H Sun, ZS Wu, M Hong
Advances in Neural Information Processing Systems 33, 2020
662020
signSGD via zeroth-order oracle
S Liu, PY Chen, X Chen, M Hong
International Conference on Learning Representations, 2018
652018
Understanding clipping for federated learning: Convergence and client-level differential privacy
X Zhang, X Chen, M Hong, ZS Wu, J Yi
International Conference on Machine Learning, ICML 2022, 2022
612022
Toward communication efficient adaptive gradient method
X Chen, X Li, P Li
Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference …, 2020
362020
Dynamic differential-privacy preserving sgd
J Du, S Li, X Chen, S Chen, M Hong
arXiv preprint arXiv:2111.00173, 2021
292021
Private stochastic non-convex optimization: Adaptive algorithms and tighter generalization bounds
Y Zhou, X Chen, M Hong, ZS Wu, A Banerjee
arXiv preprint arXiv:2006.13501, 2020
272020
Alternating gradient descent ascent for nonconvex min-max problems in robust learning and GANs
S Lu, R Singh, X Chen, Y Chen, M Hong
2019 53rd Asilomar Conference on Signals, Systems, and Computers, 680-684, 2019
12*2019
On the convergence of decentralized adaptive gradient methods
X Chen, B Karimi, W Zhao, P Li
Asian Conference on Machine Learning, 217-232, 2023
102023
Distributed adversarial training to robustify deep neural networks at scale
G Zhang, S Lu, Y Zhang, X Chen, PY Chen, Q Fan, L Martie, L Horesh, ...
Uncertainty in Artificial Intelligence, 2353-2363, 2022
92022
Joint transmit beamforming and antenna selection in MIMO systems
M Zhao, X Chen, Q Shi, W Xu
IEEE wireless communications letters 7 (5), 716-719, 2018
72018
Understanding Adaptivity in Machine Learning Optimization: Theories and Algorithms
X Chen
University of Minnesota, 2022
2022
系统目前无法执行此操作,请稍后再试。
文章 1–17