Folgen
Yang Zhang
Yang Zhang
National University of Singapore
Bestätigte E-Mail-Adresse bei mail.ustc.edu.cn - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Causal intervention for leveraging popularity bias in recommendation
Y Zhang, F Feng, X He, T Wei, C Song, G Ling, Y Zhang
Proceedings of the 44th international ACM SIGIR conference on research and …, 2021
3832021
Tallrec: An effective and efficient tuning framework to align large language model with recommendation
K Bao, J Zhang, Y Zhang, W Wang, F Feng, X He
Proceedings of the 17th ACM Conference on Recommender Systems, 1007-1014, 2023
2412023
How to retrain recommender system? A sequential meta-learning method
Y Zhang, F Feng, C Wang, X He, M Wang, Y Li, Y Zhang
Proceedings of the 43rd International ACM SIGIR Conference on Research and …, 2020
1242020
Is chatgpt fair for recommendation? evaluating fairness in large language model recommendation
J Zhang, K Bao, Y Zhang, W Wang, F Feng, X He
Proceedings of the 17th ACM Conference on Recommender Systems, 993-999, 2023
1162023
Collm: Integrating collaborative embeddings into large language models for recommendation
Y Zhang, F Feng, J Zhang, K Bao, Q Wang, X He
arXiv preprint arXiv:2310.19488, 2023
512023
A bi-step grounding paradigm for large language models in recommendation systems
K Bao, J Zhang, W Wang, Y Zhang, Z Yang, Y Luo, C Chen, F Feng, ...
arXiv preprint arXiv:2308.08434, 2023
492023
Addressing confounding feature issue for causal recommendation
X He, Y Zhang, F Feng, C Song, L Yi, G Ling, Y Zhang
ACM Transactions on Information Systems 41 (3), 1-23, 2023
362023
Causal recommendation: Progresses and future directions
W Wang, Y Zhang, H Li, P Wu, F Feng, X He
Proceedings of the 46th International ACM SIGIR Conference on Research and …, 2023
192023
Mitigating hidden confounding effects for causal recommendation
X Zhu, Y Zhang, X Yang, D Wang, F Feng
IEEE Transactions on Knowledge and Data Engineering, 2024
182024
Recommendation unlearning via influence function
Y Zhang, Z Hu, Y Bai, F Feng, J Wu, Q Wang, X He
arXiv preprint arXiv:2307.02147, 2023
172023
Large language models for recommendation: Progresses and future directions
K Bao, J Zhang, Y Zhang, W Wenjie, F Feng, X He
Proceedings of the Annual International ACM SIGIR Conference on Research and …, 2023
142023
Reformulating CTR Prediction: Learning Invariant Feature Interactions for Recommendation
Y Zhang, T Shi, F Feng, W Wang, D Wang, X He, Y Zhang
Proceedings of the 46th International ACM SIGIR Conference on Research and …, 2023
122023
Leveraging watch-time feedback for short-video recommendations: A causal labeling framework
Y Zhang, Y Bai, J Chang, X Zang, S Lu, J Lu, F Feng, Y Niu, Y Song
Proceedings of the 32nd ACM International Conference on Information and …, 2023
82023
Rethinking missing data: Aleatoric uncertainty-aware recommendation
C Wang, F Feng, Y Zhang, Q Wang, X Hu, X He
IEEE Transactions on Big Data, 2023
82023
Large language models are learnable planners for long-term recommendation
W Shi, X He, Y Zhang, C Gao, X Li, J Zhang, Q Wang, F Feng
Proceedings of the 47th International ACM SIGIR Conference on Research and …, 2024
5*2024
Prospect Personalized Recommendation on Large Language Model-based Agent Platform
J Zhang, K Bao, W Wang, Y Zhang, W Shi, W Xu, F Feng, TS Chua
arXiv preprint arXiv:2402.18240, 2024
52024
Preliminary Study on Incremental Learning for Large Language Model-based Recommender Systems
T Shi, Y Zhang, Z Xu, C Chen, F Feng, X He, Q Tian
arXiv preprint arXiv:2312.15599, 2023
52023
Exact and Efficient Unlearning for Large Language Model-based Recommendation
Z Hu, Y Zhang, M Xiao, W Wang, F Feng, X He
arXiv preprint arXiv:2404.10327, 2024
42024
Large Language Models for Recommendation: Past, Present, and Future
K Bao, J Zhang, X Lin, Y Zhang, W Wang, F Feng
Proceedings of the 47th International ACM SIGIR Conference on Research and …, 2024
32024
Decoding matters: Addressing amplification bias and homogeneity issue for llm-based recommendation
K Bao, J Zhang, Y Zhang, X Huo, C Chen, F Feng
arXiv preprint arXiv:2406.14900, 2024
32024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20