Heinz Rennenberg
Heinz Rennenberg
Bestätigte E-Mail-Adresse bei
Zitiert von
Zitiert von
Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants
G Noctor, ACM Arisi, L Jouanin, KJ Kunert, H Rennenberg, CH Foyer
Journal of Experimental Botany 49 (321), 623-647, 1998
A 3‐year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy
H Schütz, A Holzapfel‐Pschorn, R Conrad, H Rennenberg, W Seiler
Journal of Geophysical Research: Atmospheres 94 (D13), 16405-16416, 1989
The fate of excess sulfur in higher plants
H Rennenberg
Annual Review of Plant Physiology 35 (1), 121-153, 1984
Potential risks for European beech (Fagus sylvatica L.) in a changing climate
A Geßler, C Keitel, J Kreuzwieser, R Matyssek, W Seiler, H Rennenberg
Trees 21, 1-11, 2007
Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars
MS Aulakh, R Wassmann, C Bueno, J Kreuzwieser, H Rennenberg
Plant biology 3 (02), 139-148, 2001
Glutathione metabolism and possible biological roles in higher plants
H Rennenberg
Phytochemistry 21 (12), 2771-2781, 1980
Physiological responses of forest trees to heat and drought
H Rennenberg, F Loreto, A Polle, F Brilli, S Fares, RS Beniwal, A Gessler
Plant Biology, 556-571, 2006
Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism
S Kopriva, H Rennenberg
Journal of experimental botany 55 (404), 1831-1842, 2004
S-Methylmethionine Plays a Major Role in Phloem Sulfur Transport and Is Synthesized by a Novel Type of Methyltransferase
F Bourgis, S Roje, ML Nuccio, DB Fisher, MC Tarczynski, C Li, ...
The Plant Cell 11 (8), 1485-1497, 1999
Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency
ZB Luo, J He, A Polle, H Rennenberg
Biotechnology Advances 34 (6), 1131-1148, 2016
Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees
A Gessler, S Schneider, D Von Sengbusch, P Weber, U Hanemann, ...
The New Phytologist 138 (2), 275-285, 1998
Impact of gas transport through rice cultivars on methane emission from rice paddy fields
K Butterbach‐Bahl, H Papen, H Rennenberg
Plant, Cell & Environment 20 (9), 1175-1183, 1997
Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses
H Rennenberg, M Dannenmann, A Gessler, J Kreuzwieser, J Simon, ...
Plant Biology 11, 4-23, 2009
Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility
AD Peuke, H Rennenberg
EMBO reports 6 (6), 497-501, 2005
Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia
J Kreuzwieser, J Hauberg, KA Howell, A Carroll, H Rennenberg, AH Millar, ...
Plant physiology 149 (1), 461-473, 2009
Role of plants of regulating methane flux to the atmosphere
Trace gas emissions by plants, 1991
Molecular and physiological responses of trees to waterlogging stress
J Kreuzwieser, H Rennenberg
Plant, cell & environment 37 (10), 2245-2259, 2014
Nitrogen nutrition of poplar trees
H Rennenberg, H Wildhagen, B Ehlting
Plant Biology 12 (2), 275-291, 2010
Synthesis of glutathione in leaves of transgenic poplar overexpressing [gamma]-glutamylcysteine synthetase
G Noctor, M Strohm, L Jouanin, KJ Kunert, CH Foyer, H Rennenberg
Plant Physiology 112 (3), 1071-1078, 1996
Diurnal changes in the glutathione content of spruce needles (Picea abies L.)
R Schupp, H Rennenberg
Plant Science 57 (2), 113-117, 1988
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20